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Figure 1: Hubble diagram (from [3]). The deviation from a linear relationship around

40Mpc is due to peculiar velocities.

1.1.1 The expansion

Although the precise value of the Hubble constant is not known to better than a
factor of two, H0 = 100h km sec�1Mpc�1 with h = 0:4�0:9, there is little doubt that
the expansion obeys the \Hubble law" out to red shifts approaching unity [2, 3]; see
Fig. 1. As is well appreciated, the fundamental diÆculty in determining the Hubble
constant is the calibration of the cosmic-distance scale as \standard candles" are
required [4, 5]. The detection of Cepheid variable stars in an Virgo Cluster galaxy
(M101) with the Hubble Space Telescope [6] was a giant step toward an accurate
determination of H0, and the issue could well be settled within �ve years.

The Hubble law allows one to infer the distance to an object from its red shift z:
d = zH�1

0 ' 3000z h�1Mpc (for z� 1, the galaxy's recessional velocity v ' zc), and
hence \maps of the Universe" constructed from galaxy positions and red shifts are
referred to as red-shift surveys. Ordinary galaxies and clusters of galaxies are seen
out to red shifts of order unity; more unusual and rarer objects, such as radio galaxies
and quasars, are seen out to red shifts of almost �ve (the current record holder is a
quasar with red shift 4.9). Thus, we can probe the Universe with visible light to
within a few billion years of the big bang.

2



1.1.2 The cosmic background radiation

The spectrum of the cosmic background radiation (CBR) is consistent that of a
black body at temperature 2.73 K over more than three decades in wavelength (� �
0:03 cm�100 cm); see Fig. 2. The most accurate measurement of the temperature and
spectrum is that by the FIRAS instrument on the COBE satellite which determined
its temperature to be 2:726 � 0:005K [7]. It is diÆcult to come up with a process
other than an early hot and dense phase in the history of the Universe that would lead
to such a precise black body [8]. According to the standard cosmology, the surface
of last scattering for the CBR is the Universe at a red shift of about 1100 and an
age of about 180; 000 (
0h

2)�1=2 yrs. It is possible that the Universe became ionized
again after this epoch, or due to energy injection never recombined; in this case the
last-scattering surface is even \closer," zLSS ' 10[
Bh=

p

0]�2=3.

The temperature of the CBR is very uniform across the sky, to better than a part
in 104 on angular scales from arcminutes to 90 degrees; see Fig. 3. Three forms of
temperature anisotropy|two spatial and one temporal|have now been detected: (1)
A dipole anisotropy of about a part in 103, generally believed to be due to the motion
of galaxy relative to the cosmic rest frame, at a speed of about 620 km sec�1 [9]; (2) A
yearly modulation in the temperature in a given direction on the sky of about a part
in 104, due to our orbital motion around the sun at 30 km sec�1, see Fig. 4 [10]; and
(3) The temperature anisotropies detected by the Di�erential Microwave Radiometer
(DMR) on the Cosmic Background Explorer (COBE) satellite [11] and more than ten
other experiments [12].

COBE has made the most precisemeasurement of CBR anisotropy, h(�T=T )2i1=210Æ =
1:1�0:1�10�5 (the rms temperature uctuation averaged over the entire sky as mea-
sured by a beam of width 10Æ). Other ground-based and balloon-borne instruments
have now measured CBR anisotropy on angular scales from about 0:5Æ to 30Æ. The
CBR anisotropy provides strong evidence for primeval density inhomogeneities of the
same magnitude, which ampli�ed by gravity, grew into the structures that we see
today: galaxies, clusters of galaxies, superclusters, voids, walls, and so on. Moreover,
CBR anisotropy measurements are beginning to map out the inhomogeneity on scales
from about 100Mpc to 104Mpc.

1.1.3 Primordial nucleosynthesis

Last, but certainly not least, there are the abundance of the light elements. According
to the standard cosmology, when the age of the Universe was measured in seconds, the
temperatures were of order MeV, and the conditions were right for nuclear reactions
which ultimately led to the synthesis of signi�cant amounts of D, 3He, 4He, and 7Li.
The yields of primordial nucleosynthesis depend upon the baryon density, quanti�ed
as the baryon-to-photon ratio �, and the number of very light (<� MeV) particle
species, often quanti�ed as the equivalent number of light neutrino species, N�. The
predictions for the primordial abundances of all four light elements agree with their
measured abundances provided that 2:5 � 10�10 <� � <� 6 � 10�10 and N� <� 3:9; see
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Figure 2: (a) CBR spectrum as measured by the FIRAS on COBE; (b) Summary of

other CBR temperature measurements. (Figure courtesy of G. Smoot.)
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Figure 3: Summary of current measurements of CBR anisotropy in terms of a

spherical-harmonic decomposition, Cl � hjalmj2i. The rms temperature uctua-

tion measured between two points separated by an angle � is roughly given by:

(ÆT=T )� '
q
l(l+ 1)Cl with l ' 200Æ=�. The curves are the cold dark matter pre-

dictions, normalized to the COBE detection, for Hubble constants of 50 km s�1Mpc

(solid) and 35 km s�1Mpc�1 (broken). (Figure courtesy of M. White.)
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Figure 4: Yearly modulation of the CBR temperature|the earth really orbits the

sun(!) (from [10]).
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Fig. 5 [13, 14, 15, 16].
Accepting the success of the standard model of nucleosynthesis, our precise knowl-

edge of the present temperature of the Universe allows us to convert � to a mass
density, and by dividing by the critical density, �crit ' 1:88h2 � 10�29 g cm�3, to the
fraction of critical density contributed by ordinary matter:

0:009 <� 
Bh
2 <� 0:022; ) 0:01 <� 
B <� 0:15; (1)

this is the most accurate determination of the baryon density. Note, the uncertainty
in the value of the Hubble constant leads to most of the uncertainty in 
B.

The nucleosynthesis bound to N� , and more generally to the number of light
degrees of freedom in thermal equilibriumat the epoch of nucleosynthesis, is consistent
with precision measurements of the properties of the Z0 boson, which give N� =
3:0� 0:02; further, the cosmological bound predates these accelerator measurements!
The nucleosynthesis bound provides a stringent limit to the existence of new, light
particles (even beyond neutrinos), and even provides a bound to the mass the tau
neutrino, excluding a long-lived tau-neutrino of mass between 0:5MeV and 30MeV
[17, 18]. Primordial nucleosynthesis provides a beautiful illustration of the powers of
the Heavenly Laboratory, though it is outside the focus of these lectures.

The remarkable success of primordial nucleosynthesis gives us con�dence that the
standard cosmology provides an accurate accounting of the Universe at least as early
as 0:01 sec after the bang, when the temperature was about 10MeV.

1.1.4 Et cetera|and the age crisis?

There are additional lines of reasoning and evidence that support the standard cos-
mology [8]. I mention two: the age of the Universe and structure formation. I will
discuss the basics of structure formation a bit later; for now it suÆces to say that
the standard cosmology provides a basic framework for understanding the forma-
tion of structure|ampli�cation of small primeval density inhomogeneities through
gravitational instability. Here I focus on the age of the Universe.

The expansion age of the Universe|time back to zero size|depends upon the
present expansion rate, energy content, and equation of state: texp = f(�; p)H�1

0 '
9:8h�1f(�; p)Gyr. For a matter-dominated Universe, f is between 1 and 2/3 (for 
0

between 0 and 1), so that the expansion age is somewhere between 7Gyr and 20Gyr.
There are other independent measures of the age of the Universe, e.g., based upon
long-lived radioisotopes, the oldest stars, and the cooling of white dwarfs. These
\ages," ranging from 13 to 18 Gyr, span the same interval(!) [19]. This wasn't
always the case; as late as the early 1950's it was believe that the Hubble constant
was 500 km sec�1Mpc�1, implying an expansion age of at most 2Gyr|less than the
age of the earth. This discrepancy was an important motivation for the steady-state
cosmology.

While there is general agreement between the expansion age and other determina-
tions of the age of the Universe, some cosmologists are worried that cosmology is on
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Figure 5: Predicted light-element abundances including 2� theoretical uncertainties

(from [14]). The inferred primordial abundances and concordance regions are indi-

cated.
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the verge of another age crisis [5]. Let me explain, while Sandage and a few others con-
tinue to obtain values for the Hubble constant around 50 km s�1Mpc�1 [2], a variety
of di�erent techniques seem to be converging on a value around 80�10 km s�1Mpc�1

[5]. If H0 = 80kms�1Mpc�1, then texp = 12f(�; p)Gyr, and for 
0 = 1, texp = 8Gyr,
which is clearly inconsistent with other measures of the age. IfH0 = 80kms�1Mpc�1,
one is almost forced to consider the radical alternative of a cosmological constant. For
example, even with 
0 = 0:2, f ' 0:85, corresponding to texp ' 10Gyr; on the other
hand, for a at Universe with 
� = 0:7, f ' 1 and the expansion age texp ' 12Gyr.
As I shall discuss later, structure formation provides another motivation for a cosmo-
logical constant. As mentioned earlier, the detection of Cepheid variables in Virgo
[6] is a giant step toward an accurate determination of H0, and it seems likely that
the issue may be settled soon.

1.2 Basics of the Big Bang Model

The standard cosmology is based upon the maximally spatially symmetric Robertson-
Walker line element

ds2 = dt2 �R(t)2
"

dr2

1 � kr2
+ r2(d�2 + sin2 � d�2)

#
; (2)

where R(t) is the cosmic-scale factor, Rcurv � R(t)jkj�1=2 is the curvature radius,
and k=jkj = �1; 0; 1 is the curvature signature. All three models are without bound-
ary: the positively curved model is �nite and \curves" back on itself; the negatively
curved and at models are in�nite in extent (though �nite versions of both can be
constructed by imposing a periodic structure: identifying all points in space with a
fundamental cube). The Robertson-Walker metric embodies the observed isotropy
and homogeneity of the Universe. It is interesting to note that this form of the line
element was originally introduced for sake of mathematical simplicity; we now know
that it is well justi�ed at early times or today on large scales (� 10Mpc), at least
within our Hubble volume.

The coordinates, r, �, and �, are referred to as comoving coordinates: A particle
at rest in these coordinates remains at rest, i.e., constant r, �, and �. A freely
moving particle eventually comes to rest these coordinates, as its momentum is red
shifted by the expansion, p / R�1. Motion with respect to the comoving coordinates
(or cosmic rest frame) is referred to as peculiar velocity; unless \supported" by the
inhomogeneous distribution of matter peculiar velocities decay away as R�1. Thus
the measurement of peculiar velocities, which is not easy as it requires independent
measures of both the distance and velocity of an object, can be used to probe the
distribution of mass in the Universe.

Physical separations (i.e., measured by meter sticks) between freely moving par-
ticles scale as R(t); or said another way the physical separation between two points
is simply R(t) times the coordinate separation. The momenta of freely propagating
particles decrease, or \red shift," as R(t)�1, and thus the wavelength of a photon
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stretches as R(t), which is the origin of the cosmological red shift. The red shift
su�ered by a photon emitted from a distant galaxy 1+ z = R0=R(t); that is, a galaxy
whose light is red shifted by 1 + z, emitted that light when the Universe was a factor
of (1 + z)�1 smaller. Thus, when the light from the most distant quasar yet seen
(z = 4:9) was emitted the Universe was a factor of almost six smaller; when CBR
photons last scattered the Universe was about 1100 times smaller.

1.2.1 Friedmann equation and the First Law

The evolution of the cosmic-scale factor is governed by the Friedmann equation

H2 �
 
_R

R

!2
=

8�G�tot
3

� k

R2
; (3)

where �tot is the total energy density of the Universe, matter, radiation, vacuum
energy, and so on. A cosmological constant is often written as an additional term (=
�=3) on the rhs; I will choose to treat it as a constant energy density (\vacuum-energy
density"), where �vac = �=8�G. (My convention in this regard is not universal.) The
evolution of the energy density of the Universe is governed by

d(�R3) = �pdR3; (4)

which is the First Law of Thermodynamics for a uid in the expanding Universe. (In
the case that the stress energy of the Universe is comprised of several, noninteracting
components, this relation applies to each separately; e.g., to the matter and radiation
separately today.) For p = �=3, ultra-relativistic matter, � / R�4; for p = 0, very
nonrelativistic matter, � / R�3; and for p = ��, vacuum energy, � =const. If the
rhs of the Friedmann equation is dominated by a uid with equation of state p = �,
it follows that � / R�3(1+) and R / t2=3(1+).

We can use the Friedmann equation to relate the curvature of the Universe to the
energy density and expansion rate:

k=R2

H2
= 
� 1; 
 =

�tot
�crit

; (5)

and the critical density today �crit = 3H2=8�G = 1:88h2 g cm�3 ' 1:05�104 eV cm�3.
There is a one to one correspondence between 
 and the spatial curvature of the
Universe: positively curved, 
0 > 1; negatively curved, 
0 < 1; and at (
0 = 1).
Further, the \fate of the Universe" is determined by the curvature: model universes
with k � 0 expand forever, while those with k > 0 necessarily recollapse. The
curvature radius of the Universe is related to the Hubble radius and 
 by

Rcurv =
H�1

j
� 1j1=2 : (6)
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In physical terms, the curvature radius sets the scale for the size of spatial separations
where the e�ects of curved space become \pronounced." And in the case of the
positively curved model it is just the radius of the 3-sphere.

The energy content of the Universe consists of matter and radiation (today,
photons and neutrinos). Since the photon temperature is accurately known, T0 =
2:73 � 0:01K, the fraction of critical density contributed by radiation is also accu-
rately known: 
radh

2 = 4:18� 10�5. The matter content is another matter.

1.2.2 A short diversion concerning the present mass density

The matter density today, i.e., the value of 
0, is not nearly so well known [20]. Stars
contribute much less than 1% of critical density; based upon nucleosynthesis, we can
infer that baryons contribute between 1% and 15% of critical. The dynamics of various
systems allow astronomers to infer their gravitational mass. With their telescopes
they measure the amount of light, and form a mass-to-light ratio. Multiplying this
by the measured luminosity density of the Universe gives a determination of the mass
density. (The critical mass-to-light ratio is 1200hM�=L�.)

The motions of stars and gas clouds in spiral galaxies indicate that most of the
mass of spiral galaxies exists in the form of dark (i.e., no detectable radiation), ex-
tended halos, whose full extent is still not known. Many cite the at rotation curves of
spiral galaxies, which indicate that the halo density decreases as r�2, as the best evi-
dence that most of the matter in the Universe is dark. Taking the mass-to-light ratio
inferred for spiral galaxies to be typical of the Universe as a whole and remembering
that the full extent of the dark matter halos is not known, one infers 
halo >� 0:03�0:1
[21].

The masses of clusters of galaxies have been determined by applying the virial
theorem to the motions of member galaxies or to the hot gas that �lls the intracluster
medium, and by the analyzing (weak) gravitational lensing of very distant galaxies
by clusters. These mass estimates too indicate the presence of large amounts of dark
matter; when more than one method is applied to the same cluster the mass estimates
are consistent. Taking cluster mass-to-light ratios to be typical of the Universe as a
whole, in spite of the fact that only about 1 in 10 galaxies resides in a cluster, one
infers 
cluster � 0:2� 0:4.

Another interesting fact has been learned from x-ray observations of clusters: the
ratio of baryons in the hot intracluster gas to the total cluster mass, Mgas=Mtot '
(0:04�0:08)h�3=2 [22]. Since the gas mass is much greater than the mass in the visible
galaxies, this ratio provides an estimate of the cluster baryon fraction, provided that
most of the baryons reside in the hot gas or in galaxies, and suggests that the bulk
of matter in clusters is in a form other than baryons!

Not one of these methods is wholly satisfactory: Rotation curves of spiral galaxies
are still \at" at the last measured points, indicating that the mass is still increasing;
likewise, cluster virial mass estimates are insensitive to material that lies beyond the
region occupied by the visible galaxies|and moreover, only about one galaxy in ten

11



resides in a cluster. What one would like is a measurement of the mass of a very big
sample of the Universe, say a cube of 100h�1 Mpc on a side, which contains tens of
thousands of galaxies.

Over the past �ve years or so progress has been made toward such a measurement.
It involves the peculiar motion of our own galaxy, at a speed of about 620 km sec�1 in
the general direction of Hydra-Centaurus. This motion is due to the lumpy distribu-
tion of matter in our vicinity. By using gravitational-perturbation theory (actually,
not much more than Newtonian physics) and the distribution of galaxies in our vicin-
ity (as determined by the IRAS catalogue of infrared selected galaxies), one can infer
the average mass density in a very large volume and thereby 
0.

The basic physics behind the method is simple: the net gravitational pull on our
galaxy depends both upon how inhomogeneous the distribution of galaxies is and how
much mass is associated with each galaxy; by measuring the distribution of galaxies
and our peculiar velocity one can infer the \mass per galaxy" and 
0.

The value that has been inferred is big(!)|close to unity| and provides a very
strong case that 
0 is at least 0.3 [23]. Moreover, the measured peculiar velocities
of other galaxies in this volume, more than thousand, have been used in a similar
manner and indicate a similarly large value for 
0 [24]. While this technique is very
powerful, it does have its drawbacks: One has to make simple assumptions about how
accurately mass is traced by light (the observed galaxies); one has to worry whether
or not a signi�cant portion of our galaxy's velocity is due to galaxies outside the IRAS
sample|if so, this would lead to an overestimate of 
0; and so on. This technique is
not only very promising|but provides the \correct" answer (in my opinion!).

The so-called classical kinematic tests|Hubble diagram, angle-red shift relation,
galaxy count-red shift relation|can, in principle, provide a determination of 
0 by
determining the deceleration parameter q0 [25]. However, all these methods require
standard candles, rulers, or galaxies, and for this reason have proved inconclusive.
However, that hasn't discouraged everyone. There are a number of e�orts to de-
termine q0 using the galaxy number-count test [26], and two groups are trying to
measure q0 by constructing a Hubble diagram based upon Type Ia supernovae (out
to redshifts of 0.5 or more).

To summarize this aside on the mass density of the Universe:

1. Most of the matter is dark.

2. Baryons provide between about 1% and 15% of the mass density (allowing
0:4 < h < 1; taking h > 0:6 the upper limit decreases to 6%).

3. There is a strong case that 
0 >� 0:3 (peculiar velocities); a convincing case
that 
0 >� 0:2 (cluster masses); and an airtight case that 
0 >� 0:1 (at rotation
curves of spirals).

4. Most of the baryons are dark (not in stars). In clusters the bulk of the baryons
are in hot gas.
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5. The evidence for nonbaryonic dark matter continues to mount; e.g., the gap
between 
B and 
0 and the cluster baryon fraction.

The current prejudice|and certainly that of this author|is a at Universe (
0 =
1) with nonbaryonic dark matter, 
X � 1� 
B. However, I shall continue to display
the 
0 dependence of important quantities.

1.2.3 The early, radiation-dominated Universe

In any case, at present, matter outweighs radiation by a wide margin. However, since
the energy density in matter decreases as R�3, and that in radiation as R�4 (the
extra factor due to the red shifting of the energy of relativistic particles), at early
times the Universe was radiation dominated|indeed the calculations of primordial
nucleosynthesis provide excellent evidence for this. Denoting the epoch of matter-
radiation equality by subscript `EQ,' and using T0 = 2:73K, it follows that

REQ = 4:18� 10�5 (
0h
2)�1; TEQ = 5:62(
0h

2) eV; (7)

tEQ = 4:17 � 1010(
0h
2)�2 sec: (8)

At early times the expansion rate and age of the Universe were determined by the
temperature of the Universe and the number of relativistic degrees of freedom:

�rad = g�(T )
�2T 4

30
; H ' 1:67g1=2� T 2=mPl; (9)

) R / t1=2; t ' 2:42 � 10�6g�1=2� (T=GeV)�2 sec; (10)

where g�(T ) counts the number of ultra-relativistic degrees of freedom (� the sum
of the internal degrees of freedom of particle species much less massive than the
temperature) and mPl � G�1=2 = 1:22 � 1019GeV is the Planck mass. For example,
at the epoch of nucleosynthesis, g� = 10:75 assuming three, light (� MeV) neutrino
species; taking into account all the species in the standard model, g� = 106:75 at
temperatures much greater than 300GeV; see Fig. 6.

A quantity of importance related to g� is the entropy density in relativistic parti-
cles,

s =
�+ p

T
=

2�2

45
g�T

3;

and the entropy per comoving volume,

S / R3s / g�R
3T 3:

By a wide margin most of the entropy in the Universe exists in the radiation bath.
The entropy density is proportional to the number density of relativistic particles.
At present, the relativistic particle species are the photons and neutrinos, and the
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Figure 6: The total e�ective number of relativistic degrees of freedom g�(T ) in the

standard model of particle physics as a function of temperature.
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entropy density is a factor of 7.04 times the photon-number density: n = 413 cm�3

and s = 2905 cm�3.
In thermal equilibrium|which provides a good description of most of the history

of the Universe|the entropy per comoving volume S remains constant. This fact is
very useful. First, it implies that the temperature and scale factor are related by

T / g�1=3� R�1; (11)

which for g� =const leads to the familiar T / R�1.
Second, it provides a way of quantifying the net baryon number (or any other

particle number) per comoving volume:

NB � R3nB =
nB
s
' (4 � 7) � 10�11: (12)

The baryon number of the Universe tells us two things: (1) the entropy per particle
in the Universe is extremely high, about 1010 or so compared to about 10�2 in the
sun and a few in the core of a newly formed neutron star. (2) The asymmetry
between matter and antimatter is very small, about 10�10, since at early times quarks
and antiquarks were roughly as abundant as photons. One of the great successes of
particle cosmology is baryogenesis, the idea that B, C, and CP violating interactions
occurring out-of-equilibrium early on allow the Universe to develop a net baryon
number of this magnitude [27].

Finally, the constancy of the entropy per comoving volume allows us to charac-
terize the size of comoving volume corresponding to our present Hubble volume in a
very physical way: by the entropy it contains,

SU =
4�

3
H�3
0 s ' 1090: (13)

1.2.4 The earliest history

The standard cosmology is tested back to times as early as about 0.01 sec; it is only
natural to ask how far back one can sensibly extrapolate. Since the fundamental
particles of Nature are point-like quarks and leptons whose interactions are pertur-
batively weak at energies much greater than 1GeV, one can imagine extrapolating as
far back as the epoch where general relativity becomes suspect, i.e., where quantum
gravitational e�ects are likely to be important: the Planck epoch, t � 10�43 sec and
T � 1019GeV. Of course, at present, our �rm understanding of the elementary par-
ticles and their interactions only extends to energies of the order of 100GeV, which
corresponds to a time of the order of 10�11 sec or so. We can be relatively certain
that at a temperature of 100MeV � 200MeV (t � 10�5 sec) there was a transition
(likely a second-order phase transition) from quark/gluon plasma to very hot hadronic
matter, and that some kind of phase transition associated with the symmetry break-
down of the electroweak theory took place at a temperature of the order of 300GeV
(t � 10�11 sec).
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It is interesting to look at the progress that has taken place since Weinberg's
classic text on cosmology was published in 1972 [28]; at that time many believed
that the Universe had a limiting temperature of the order of several hundred MeV,
due to the exponentially rising number of particle states, and that one could not
speculate about earlier times. Today, based upon our present knowledge of physics
and powerful mathematical tools (e.g., gauge theories, grand uni�ed theories, and
superstring theory) we are able to make quantitative speculations back to the Planck
epoch|and even earlier. Of course, these speculations could be totally wrong, based
upon a false sense of con�dence (arrogance?). As I shall discuss, ination is one
of these well de�ned|and well motivated|speculations about the history of the
Universe well after the Planck epoch, but well before primordial nucleosynthesis.

1.2.5 The matter and curvature dominated epochs

After the equivalence epoch, the matter density exceeds that of radiation. During the
matter-dominated epoch the scale factor grows as t2=3 and the age of the Universe is
related to red shift by

t = 2:06 � 1017(
0h
2)�1=2(1 + z)�3=2 sec: (14)

If 
0 < 1, the matter-dominated epoch is followed by a \curvature-dominated"
epoch where the rhs of the Friedmann equation is dominated by the jkj=R2 term.
When the Universe is curvature dominated it is said to expand freely, no longer
decelerating since the gravitational e�ect of matter has become negligible: �R � 0 and
R / t. The epoch of curvature dominance begins when the matter and curvature
terms are equal:

RCD =

0

1 � 
0
�! 
0; zCD = 
�1

0 � 2 �! 
�1
0 ; (15)

where the limits shown are for 
0 ! 0. By way of comparison, in a at Universe with
a cosmological constant, the Universe becomes \vacuum dominated" when R = Rvac:

Rvac =
�


0

1 �
0

�1=3
�! 
1=3

0 ; zvac =
�
1 � 
0


0

�1=3
� 1 �! 
�1=3

0 : (16)

For a given value of 
0, the transition occurs much more recently, which has impor-
tant implications for structure formation since small density perturbations only grow
during the matter-dominated era.

1.2.6 One last thing: horizons

In spite of the fact that the Universe was vanishingly small at early times, the rapid ex-
pansion precluded causal contact from being established throughout. Photons travel
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on null paths characterized by dr = dt=R(t); the physical distance that a photon
could have traveled since the bang until time t, the distance to the horizon, is

dH(t) = R(t)
Z t

0

dt0

R(t0)

= t=(1 � n) = nH�1=(1 � n) for R(t) / tn; n < 1: (17)

Note, in the standard cosmology the distance to the horizon is �nite, and up to
numerical factors, equal to the age of the Universe or the Hubble radius, H�1. For
this reason, I will use horizon and Hubble radius interchangeably.1

An important quantity is the entropy within a horizon volume: SHOR � H�3T 3;
during the radiation-dominated epoch H � T 2=mPl, so that

SHOR �
�
mPl

T

�3
; (18)

from this we conclude that at early times the comoving volume that encompasses all
that we can see today (characterized by an entropy of 1090) was comprised of a very
large number of causally disconnected regions.

1.3 Two challenges: dark matter and structure formation

These two challenges are not unrelated: a detailed understanding of the formation of
structure in the Universe necessarily requires knowledge of the quantity and compo-
sition of matter in the Universe.

We have every indication that the Universe at early times, say t � 300; 000 yrs,
was very homogeneous; however, today inhomogeneity (or structure) is ubiquitous:
stars (Æ�=� � 1030), galaxies (Æ�=� � 105), clusters of galaxies (Æ�=� � 10 � 103),
superclusters, or \clusters of clusters" (Æ�=� � 1), voids (Æ�=� � �1), great walls,
and so on.

For some 25 years the standard cosmology has provided a general framework
for understanding this: Once the Universe becomes matter dominated (around 1000
yrs after the bang) primeval density inhomogeneities (Æ�=� � 10�5) are ampli�ed
by gravity and grow into the structure we see today [29]. The fact that a uid of
self-gravitating particles is unstable to the growth of small inhomogeneities was �rst
pointed out by Jeans and is known as the Jeans instability. The existence of these
inhomogeneities was con�rmed in spectacular fashion by the COBE DMR discovery
of CBR anisotropy.

1In inationary models the horizon and Hubble radius are not roughly equal as the horizon

distance grows exponentially relative to the Hubble radius; in fact, at the end of ination they di�er

by eN , where N is the number of e-folds of ination. However, I will slip and use \horizon" and

\Hubble radius" interchangeably, though I will always mean Hubble radius.
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At last, the basic picture has been put on �rm ground (whew!). Now the challenge
is to �ll in the details|origin of the density perturbations, precise evolution of the
structure, and so on. As I shall emphasize, such an understanding may well be within
reach, and o�ers a window on the early Universe.

1.3.1 The general picture: gravitational instability

Let us begin by expanding the perturbation to the matter density in plane waves

Æ�M(x; t)

�M
=

1

(2�)3

Z
d3k Æk(t)e

�ik�x; (19)

where � = 2�=k is the comoving wavelength of the perturbation and �phys = R� is the
physical wavelength. The comoving wavelengths of perturbations corresponding to
bright galaxies, clusters, and the present horizon scale are respectively: about 1Mpc,
10Mpc, and 3000h�1 Mpc, where 1Mpc ' 3:09 � 1024 cm ' 1:56 � 1038GeV�1.

The growth of small matter inhomogeneities of wavelength smaller than the Hub-
ble scale (�phys <� H�1) is governed by a Newtonian equation:

�Æk + 2H _Æk + v2sk
2Æk=R

2 = 4�G�MÆk; (20)

where v2s = dp=d�M is the square of the sound speed. Competition between the pres-
sure term and the gravity term on the rhs determine whether or not pressure can
counteract gravity: Perturbations with wavenumber larger than the Jeans wavenum-
ber, k2J = 4�GR2�M=v

2
s , are Jeans stable and just oscillate; perturbations with smaller

wavenumber are Jeans unstable and can grow. For cold dark matter vs ' 0 and all
scales are Jeans unstable; even for baryonic matter, after decoupling kJ corresponds
to a baryon mass of only about 105M�. All the scales of interest here are Jeans
unstable and we will ignore the pressure term.

Let us discuss solutions to this equation under di�erent circumstances. First,
consider the Jeans problem, evolution of perturbations in a static uid, i.e., H = 0.
In this case Jeans unstable perturbations grow exponentially, Æk / exp(t=� ) where � =
1=
p
4G��M . Next, consider the growth of Jeans unstable perturbations in a matter-

dominated Universe, i.e., H2 = 8�G�M=3 and R / t2=3. Because the expansion tends
to \pull particles away from one another," the growth is only power law, Æk / t2=3;
i.e., at the same rate as the scale factor. Finally, consider a radiation or curvature
dominated Universe, i.e., 8�G�rad=3 or jkj=R2 much greater than 8�G�M=3. In this
case, the expansion is so rapid that matter perturbations grow very slowly, as lnR
in radiation-dominated epoch, or not at all Æk =const in the curvature-dominated
epoch.

The growth of nonlinear perturbations is another matter; once a perturbation
reaches an overdensity of order unity or larger it \separates" from the expansion|
i.e., becomes its own self-gravitating system and ceases to expand any further. In the
process of virial relaxation, its size decreases by a factor of two|density increases by
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a factor of 8; thereafter, its density contrast grows as R3 since the average matter
density is decreasing as R�3, though smaller scales could become Jeans unstable and
collapse further to form smaller objects of higher density, stars, etc.

From this we learn that structure formation begins when the Universe becomes
matter dominated and ends when it becomes curvature dominated (at least the
growth of linear perturbations). The total growth available for linear perturba-
tions is RCD=REQ ' 2:4 � 104 
2

0h
2; since nonlinear structures have evolved by the

present epoch, we can infer that primeval perturbations of the order (Æ�M=�M )EQ �
4 � 10�5 (
0h)�2 are required. Note that in a low-density Universe larger initial
perturbations are necessary as there is less time for growth (\the low 
0 squeeze").
Further, in a baryon-dominated Universe things are even more diÆcult as perturba-
tions in the baryons cannot begin to grow until after decoupling since matter is tightly
coupled to the radiation. (In a at, low-
0 model with a cosmological constant the

growth of linear uctuations continues until almost today since z� � 
�1=3
0 , and so

the total growth factor is about 2:4� 104(
0h
2). We will return to this model later.)

1.3.2 CBR temperature uctuations

The existence of density inhomogeneities has another important consequence: uctu-
ations in the temperature of the CBR of a similar amplitude [30]. The temperature
di�erence measured between two points separated by a large angle (>� 1Æ) arises due
to a very simple physical e�ect:2 The di�erence in the gravitational potential between
the two points on the last-scattering surface, which in turn is related to the density
perturbation, determines the temperature anisotropy on the angular scale subtended
by that length scale,

 
ÆT

T

!
�

= �
 
Æ�

3

!
�

� 1

2

 
Æ�

�

!
HOR;�

; (21)

where the scale � � 100h�1 Mpc(�=deg) subtends an angle � on the last-scattering
surface. This is known as the Sachs-Wolfe e�ect [31].

The quantity (Æ�=�)HOR;� is the amplitude with which a density perturbation
crosses inside the horizon, i.e., when R� � H�1. Since the uctuation in the gravi-
tational potential Æ� � (R�=H�1)2(Æ�=�), the horizon-crossing amplitude is equal to
the gravitational potential (or curvature) uctuation. The horizon-crossing amplitude
(Æ�=�)HOR has several nice features: (i) during the matter-dominated era the potential
uctuation on a given scale remains constant, and thus the potential uctuations at
decoupling on scales that crossed inside the horizon after matter-radiation equality,
corresponding to angular scales <� 0:1Æ, are just given by their horizon-crossing am-
plitude; (ii) because of its relationship to Æ� it provides a dimensionless, geometrical

2Large angles mean those larger than the angle subtended by the horizon-scale at decoupling,

� � H�1

DEC
=H�1

0
� z

�1=2
DEC

� 1Æ.
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measure of the size of the density perturbation on a given scale, and its e�ect on the
CBR; (iii) by specifying perturbation amplitudes at horizon crossing one can e�ec-
tively avoid discussing the evolution of density perturbations on scales larger than
the horizon, where a Newtonian analysis does not suÆce and where gauge subtleties
(associated with general relativity) come into play; and �nally (iv) the density per-
turbations generated in inationary models are characterized by (Æ�=�)HOR ' const.

On angular scales smaller than about 1Æ two other physical e�ects lead to CBR
temperature uctuations: the motion of the last-scattering surface (Doppler) and the
intrinsic uctuations in the local photon temperature. These uctuations are much
more diÆcult to compute, and depend on microphysics|the ionization history of
the Universe and the damping of perturbations in the photon-baryon uid due to
photon streaming. Not only are the Sachs-Wolfe uctuations simpler to compute,
but they accurately mirror the primeval uctuations since at the epoch of decoupling
microphysics is restricted to angular scales less than about a degree.

In sum, on large angular scales the Sachs-Wolfe e�ect dominates; on the scale of
about 1Æ the total CBR uctuation is about twice that due to the Sachs-Wolfe e�ect;
on smaller scales the Doppler and intrinsic uctuations dominate (see Fig. 3). CBR
temperature uctuations on scales smaller than about 0:1Æ are severely reduced by
the smearing e�ect of the �nite thickness of last-scattering surface. (For a beautiful
exposition of how CBR anisotropy arises see Ref. [32].)

Details aside, in the context of the gravitational instability scenario density pertur-
bations of suÆcient amplitude to explain the observed structure lead to temperature
uctuations in the CBR of characteristic size,

ÆT

T
� 10�5 (
0h)

�2: (22)

To be sure I have brushed over important details, but this equation conveys a great
deal. First, the overall amplitude is set by the inverse of the growth factor, which is
just the ratio of the radiation energy density to matter density at present. Next, it
explains why theoretical cosmologists were so relieved when the COBE DMR detected
temperature uctuations of this amplitude, and conversely why one heard o�handed
remarks before the COBE DMR detection that the standard cosmology was in trouble
because the CBR temperature was too uniform to allow for the observed structure
to develop. Finally, it illustrates one of the reasons why cosmologists who study
structure formation have embraced the at-Universe model with such enthusiasm: If
we accept the Universe that meets the eye, 
0 � 0:1 and baryons only, then the
simplest models of structure formation predict temperature uctuations of the or-
der of 10�3, far too large to be consistent with observation. Later, I will mention
Peebles' what-you-see-is-what-you-get model [33], also known as PIB for primeval
baryon isocurvature uctuation, which is still viable because the spectrum of pertur-
bations decreases rapidly with scale so that the perturbations that give rise to CBR
uctuations are small (which is no mean feat). Historically, it was fortunate that
one started with a low-
0, baryon-dominated Universe: the theoretical predictions
for the CBR uctuations were suÆciently favorable that experimentalist were stirred
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to try to measure them|and then, slowly, theorists lowered their predictions. Had
the theoretical expectations begun at 10�5, experimentalists might have been too
discouraged to even try!

1.3.3 An initial data problem

With the COBE DMR detection in hand we can praise the success of the gravitational
instability scenario; however, the details now remain to be �lled in. The structure
formation problem is now one of initial data, namely

1. The quantity and composition of matter in the Universe, 
0, 
B, and 
other.

2. The spectrum of initial density perturbations: for the purist, (Æ�=�)HOR, or for
the simulator, the Fourier amplitudes at the epoch of matter-radiation equality.

In a statistical sense, these initial data provide the \blueprint" for the formation of
structure.

The initial data are the challenge and the opportunity. Although the gravitational
instability picture has been around since the discovery of the CBR itself, the lack of
speci�city in initial data has impeded progress. With the advent of the study of the
earliest history of the Universe a new door was opened. We now have several well
motivated early-Universe blueprints: Ination-produced density perturbations and
nonbaryonic dark matter; cosmic-string produced perturbations and nonbaryonic dark
matter [34]; texture produced density perturbations and nonbaryonic dark matter
[35], and one \conventional model," a baryon-dominated Universe with isocurvature
uctuations3 [33]. Structure formation provides the opportunity to probe the earliest
history of the Universe. I will focus on the cold dark matter \family of models,"
which are motivated by ination. Already the ood of data has all but eliminated
the conventional model; the texture and cosmic-string models face severe problems
with CBR anisotropy|and who knows, even the cold dark matter models may be
eliminated.

2 INFLATIONARY THEORY

2.1 Generalities

As successful as the big-bang cosmology it su�ers from a dilemma involving initial
data. Extrapolating back, one �nds that the Universe apparently began from a very

3Isocurvature baryon-number uctuations correspond at early times to uctuations in the local

baryon number but not the energy density. At late times, when the Universe is matter dominated,

they become uctuations in the mass density of a comparable amplitude.
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special state: A slightly inhomogeneous and very at Robertson-Walker spacetime.
Collins and Hawking showed that the set of initial data that evolve to a spacetime
that is as smooth and at as ours is today of measure zero [36]. (In the context of
simple grand uni�ed theories, the hot big bang su�ers from another serious problem:
the extreme overproduction of superheavy magnetic monopoles; in fact, it was an
attempt to solve the monopole problem which led Guth to ination.)

The cosmological appeal of ination is its ability to lessen the dependence of the
present state of the Universe upon the initial state. Two elements are essential to
doing this: (1) accelerated (\superluminal") expansion and the concomitant tremen-
dous growth of the scale factor; and (2) massive entropy production [38]. Together,
these two features allow a small, smooth subhorizon-sized patch of the early Universe
to grow to a large enough size and contain enough heat (entropy in excess of 1088) to
easily encompass our present Hubble volume. Provided that the region was originally
small compared to the curvature radius of the Universe it would appear at then and
today (just as any small portion of the surface of a sphere appears at).

While there is presently no standard model of ination|just as there is no stan-
dard model for physics at these energies (typically 1015GeV or so)|viable models
have much in common. They are based upon well posed, albeit highly speculative,
microphysics involving the classical evolution of a scalar �eld. The superluminal ex-
pansion is driven by the potential energy (\vacuum energy") that arises when the
scalar �eld is displaced from its potential-energy minimum, which results in nearly
exponential expansion. Provided the potential is at, during the time it takes for the
�eld to roll to the minimum of its potential the Universe undergoes many e-foldings
of expansion (more than around 60 or so are required to realize the bene�cial features
of ination). As the scalar �eld nears the minimum, the vacuum energy has been con-
verted to coherent oscillations of the scalar �eld, which correspond to nonrelativistic
scalar-�eld particles. The eventual decay of these particles into lighter particles and
their thermalization results in the \reheating" of the Universe and accounts for all
the heat in the Universe today (the entropy production event).

Superluminal expansion and the tremendous growth of the scale factor (by a factor
greater than that since the end of ination) allow quantum uctuations on very small
scales (<� 10�23 cm) to be stretched to astrophysical scales (>� 1025 cm). Quantum
uctuations in the scalar �eld responsible for ination ultimately lead to an almost
scale-invariant spectrum of density perturbations [39], and quantum uctuations in
the metric itself lead to an almost scale-invariant spectrum of gravity-waves [40].
Scale invariance for density perturbations means scale-independent uctuations in
the gravitational potential (equivalently, density perturbations of di�erent wavelength
cross the horizon with the same amplitude); scale invariance for gravity waves means
that gravity waves of all wavelengths cross the horizon with the same amplitude.
Because of subsequent evolution, neither the scalar nor the tensor perturbations are
scale invariant today.

22



2.2 Metaphysical implications

Ination alleviates the \specialness" problem greatly, but does not eliminate all de-
pendence upon the initial state [41]. All open FRW models will inate and become
at; however, many closed FRW models will recollapse before they can inate. If
one imagines the most general initial spacetime as being comprised of negatively and
positively curved FRW (or Bianchi) models that are stitched together, the failure of
the positively curved regions to inate is of little consequence: because of exponential
expansion during ination the negatively curved regions will occupy most of the space
today. Nor does ination solve the smoothness problem forever; it just postpones the
problem into the exponentially distant future: We will be able to see outside our
smooth inationary patch and 
 will start to deviate signi�cantly from unity at a
time t � t0 exp[3(N � Nmin], where N is the actual number of e-foldings of ination
and Nmin � 60 is the minimum required to solve the horizon/atness problems.

Linde has emphasized that ination has changed our view of the Universe in a very
fundamental way [42]. While cosmologists have long used the Copernican principle
to argue that the Universe must be smooth because of the smoothness of our Hubble
volume, in the post-ination view, our Hubble volume is smooth because it is a small
part of a region that underwent ination. On the largest scales the structure of the
Universe is likely to be very rich: Di�erent regions may have undergone di�erent
amounts of ination, may have di�erent laws of physics because they evolved into
di�erent vacuum states (of equivalent energy), and may even have di�erent numbers
of spatial dimensions. Since it is likely that most of the volume of the Universe is
still undergoing ination and that inationary patches are being constantly produced
(eternal ination), the age of the Universe is a meaningless concept and our expansion
age merely measures the time back to the end of our inationary event!

2.3 Models

In Guth's seminal paper [43] he introduced the idea of ination, sung its praises,
and showed that the model that he based the idea upon did not work! Thanks to
very important contributions by Linde [44] and Albrecht and Steinhardt [45] that
was quickly remedied, and today there are many viable models of ination. That of
course is both good news and bad news; it means that there is no standard model
of ination. Again, the absence of a standard model of ination should be viewed in
the light of our general ignorance about fundamental physics at these energies.

Many di�erent approaches have taken in constructing particle-physics models for
ination. Some have focussed on very simple scalar potentials, e.g., V (�) = ��4 or
= m2�2=2, without regard to connecting the model to any underlying theory [46,
47]. Others have proposed more complicated models that attempt to make contact
with speculations about physics at very high energies, e.g., grand uni�cation [48],
supersymmetry [49, 50, 51], preonic physics [52], or supergravity [53]. Several authors
have attempted to link ination with superstring theory [54] or \generic predictions"

23



of superstring theory such as pseudo-Nambu-Goldstone boson �elds [55]. While the
scale of the vacuum energy that drives ination is typically of order (1015GeV)4,
a model of ination at the electroweak scale, vacuum energy � (1TeV)4, has been
proposed [56]. There are also models in which there are multiple epochs of ination
[57].

In all of the models above gravity is described by general relativity. A qualitatively
di�erent approach is to consider ination in the context of alternative theories of
gravity. (After all, ination probably involves physics at energy scales not too di�erent
from the Planck scale and the e�ective theory of gravity at these energies could well
be very di�erent from general relativity; in fact, there are some indications from
superstring theory that gravity in these circumstances might be described by a Brans-
Dicke like theory.) Perhaps the most successful of these models is �rst-order ination
[58, 59]. First-order ination returns to Guth's original idea of a strongly �rst-order
phase transition; in the context of general relativity Guth's model failed because
the phase transition, if inationary, never completed. In theories where the e�ective
strength of gravity evolves, like Brans-Dicke theory, the weakening of gravity during
ination allows the transition to complete. In other models based upon nonstandard
gravitation theory, the scalar �eld responsible for ination is itself related to the size
of additional spatial dimensions, and ination then also explains why our three spatial
dimensions are so big, while the other spatial dimensions are so small.

All models of ination have one feature in common: the scalar �eld responsible
for ination has a very at potential-energy curve and is very weakly coupled. This
typically leads to a very small dimensionless number, usually a dimensionless coupling
of the order of 10�14. Such a small number, like other small numbers in physics (e.g.,
the ratio of the weak to Planck scales� 10�17 or the ratio of the mass of the electron to
the W=Z boson masses � 10�5), runs counter to one's belief that a truly fundamental
theory should have no tiny parameters, and cries out for an explanation. At the very
least, this small number must be stabilized against quantum corrections|which it
is in all of the previously mentioned models.4 In some models, the small number in
the inationary potential is related to other small numbers in particle physics: for
example, the ratio of the electron mass to the weak scale or the ratio of the uni�cation
scale to the Planck scale. Explaining the origin of the small number that seems to be
associated with ination is both a challenge and an opportunity.

Because of the growing base of observations that bear on ination, another ap-
proach to model building is emerging: the use of observations to constrain the under-
lying inationary potential. I will return to \reconstructing" the inationary potential
from data later. Before going on, I want to emphasize that while there are many va-
rieties of ination, there are robust predictions which are crucial to sharply testing

4It is sometimes stated that ination is unnatural because of the small coupling of the scalar

�eld responsible for ination; while the small coupling certainly begs explanation, these inationary

models are not unnatural in the rigorous technical sense as the small number is stable against

quantum uctuations.
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ination.

2.4 Three robust predictions

Ination makes three robust5 predictions:

1. Flat universe. Because solving the \horizon" problem (large-scale smoothness
in spite of small particle horizons at early times) and solving the \atness"
problem (maintaining 
 very close to unity until the present epoch) are linked
geometrically [37, 38], this is the most robust prediction of ination. Said
another way, it is the prediction that most inationists would be least willing
to give up. (Even so, models of ination have been constructed where the
amount of ination is tuned just to give 
0 less than one today [60].) Through
the Friedmann equation for the scale factor, at implies that the total energy
density (matter, radiation, vacuum energy, ...) is equal to the critical density.

2. Nearly scale-invariant spectrum of gaussian density perturbations.
Essentially all ination models predict a nearly, but not exactly, scale-invariant
spectrum of gaussian density perturbations [47]. Described in terms of a power
spectrum, P (k) � hjÆkj2i = Akn, where Æk is the Fourier transform of the
primeval density perturbations, and the spectral index n � 1 (the scale-invariant
limit is n = 1). The inationary prediction is statistical: the Æk are drawn from
a gaussian distribution whose variance is jÆkj2. The overall amplitude A is very
model dependent. Density perturbations give rise to CBR anisotropy as well
as seeding structure formation. Requiring that the density perturbations are
consistent with the observed level of anisotropy of the CBR (and large enough
to produce the observed structure formation) is the most severe constraint on
inationary models and leads to the small dimensionless number that all ina-
tionary models have.

3. Nearly scale-invariant spectrum of gravitational waves. These gravita-
tional waves have wavelengths from O(1 km) to the size of the present Hubble
radius and beyond. Described in terms of a power spectrum for the dimension-
less gravity-wave amplitude at early times, PT (k) � hjhkj2i = ATk

nT�3, where
the spectral index nT � 0 (the scale-invariant limit is nT = 0). As before,
the power spectrum speci�es the variance of the Fourier components. Once
again, the overall amplitude AT is model dependent (varying as the value of
the inationary vacuum energy). Unlike density perturbations, which are re-
quired to initiate structure formation, there is no cosmological lower bound to
the amplitude of the gravity-wave perturbations. Tensor perturbations also give
rise to CBR anisotropy; requiring that they do not lead to excessive anisotropy

5Because theorists are so clever, it is not possible nor prudent to use the word immutable. Models

that violate any or all of these \robust predications" can and have been constructed.
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implies that the energy density that drove ination must be less than about
(1016GeV)4. This indicates that if ination took place, it did so at an energy
well below the Planck scale.6

There are other interesting consequences of ination that are less generic. For
example, in models of �rst-order ination, in which reheating occurs through the nu-
cleation and collision of vacuum bubbles, there is an additional, larger amplitude, but
narrow-band, spectrum of gravitational waves (
GWh

2 � 10�6) [61]. In other models
large-scale primeval magnetic �elds of interesting size are seeded during ination [62].

3 Ination: The Details

In this Section I discuss how to analyze an inationary model, given the scalar poten-
tial. In two sections hence I will work through a number of examples. The focus will
be on the metric perturbations|density uctuations [39] and gravity waves [40]|
that arise due to quantum uctuations, and the CBR temperature anisotropies that
result from them.7 Perturbations on all astrophysically interesting scales, say 1Mpc
to 104Mpc, are produced during an interval of about 8 e-folds around 50 e-folds before
the end of ination, when these scales crossed outside the horizon during ination.
I will show how the density perturbations and gravity waves can be related to three
features of the inationary potential: its value V50, its steepness x50 � (mPlV

0=V )50,
and the change in its steepness x050, evaluated in the region of the potential where the
scalar �eld was about 50 e-folds before the end of ination. In principle, cosmological
observations, most importantly CBR anisotropy, can be used to determine the char-
acteristics of the density perturbations and gravitational waves and thereby V50, x50,
and x050.

All viable models of ination are of the slow-rollover variety, or can be recast as
such [65]. In slow-rollover ination a scalar �eld that is initially displaced from the
minimum of its potential rolls slowly to that minimum, and as it does the cosmic-
scale factor grows very rapidly. Once the scalar �eld reaches the minimum of the
potential it oscillates about it, so that the large potential energy has been converted
into coherent scalar-�eld oscillations, corresponding to a condensate of nonrelativistic
scalar particles. The eventual decay of these particles into lighter particle states and
their subsequent thermalization lead to the reheating of the Universe to a temperature
TRH '

p
�mPl, where � is the decay width of the scalar particle [64, 65]. Here, I

6To be more precise, the part of ination that led to perturbations on scales within the present

horizon involved subPlanckian energy densities. In some models of ination, the earliest stages,

which do not inuence scales that we are privy to, involve energies as large as the Planck scale.

7Isocurvature perturbations can arise due to quantum uctuations in other massless �elds, e.g.,

the axion �eld, if it exists [63].
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will focus on the classical evolution of the inaton �eld during the slow-roll phase
and the small quantum uctuations in the inaton �eld which give rise to density
perturbations and those in the metric which give rise to gravity waves.

To begin, let us assume that the scalar �eld driving ination is minimally coupled
so that its stress-energy tensor takes the canonical form,

T�� = @��@��� Lg�� ; (23)

where the Lagrangian density of the scalar �eld L = 1
2
@��@

�� � V (�). If we make
the usual assumption that the scalar �eld � is spatially homogeneous, or at least
so over a Hubble radius, the stress-energy tensor takes the perfect-uid form with
energy density, � = 1

2
_�2+V (�), and isotropic pressure, p = 1

2
_�2�V (�). The classical

equations of motion for � can be obtained from the �rst law of thermodynamics,
d(R3�) = �pdR3, or by taking the four-divergence of T ��:

��+ 3H _� + V 0(�) = 0; (24)

the � _� term responsible for reheating has been omitted since we shall only be inter-
ested in the slow-rollover phase. In addition, there is the Friedmann equation, which
governs the expansion of the Universe,

H2 =
8�

3mPl
2

�
V (�) +

1

2
_�2
�
' 8�V (�)

3mPl
2
; (25)

where we assume that the contribution of all other forms of energy density, e.g.,
radiation and kinetic energy of the scalar �eld, and the curvature term (k=R2) are
negligible. The justi�cation for discussing ination in the context of a at FRW
model with a homogeneous scalar �eld driving ination were discussed earlier (and
at greater length in Ref. [66]); including the � kinetic term increases the righthand
side of Eq. (25) by a factor of (1 + x2=48�), a small correction for viable models.

In the next Section I will be more precise about the amplitude of density perturba-
tions and gravitational waves; for now, let me briey discuss how these perturbations
arise and give their characteristic amplitudes. The metric perturbations produced in
inationary models are very nearly \scale invariant," a particularly simple spectrum
which was �rst discussed by Harrison and Zel'dovich [67], and arise due to quantum
uctuations. In deSitter space all massless scalar �elds experience quantum uctu-
ations of amplitude H=2�. The graviton is massless and can be described by two

massless scalar �elds, h+;� =
p
16�G�+;� (+ and � are the two polarization states).

The inaton by virtue of its at potential is for all practical purposes massless.
Fluctuations in the inaton �eld lead to density uctuations because of its scalar

potential, Æ� � HV 0; as a given mode crosses outside the horizon, the density per-
turbation on that scale becomes a classical metric perturbation. While outside the
horizon, the description of the evolution of a density perturbation is beset with sub-
tleties associated with the gauge freedom in general relativity; there is, however, a
simple gauge-invariant quantity, � ' Æ�=(� + p), which remains constant outside the
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horizon. By equating the value of � at postination horizon crossing with its value
as the scale crosses outside the horizon it follows that (Æ�=�)HOR � HV 0= _�2 (note:
�+ p = _�2); see Fig. 7.

The evolution of a gravity-wave perturbation is even simpler; it obeys the massless
Klein-Gordon equation

�hik + 3H _hik + k2hik=R
2 = 0; (26)

where k is the wavenumber of the mode and i = +;�. For superhorizon sized
modes, k <� RH, the solution is simple: hik =const. Like their density pertur-
bation counterparts, gravity-wave perturbations become classical metric perturba-
tions as they cross outside the horizon; they are characterized by an amplitude
hik '

p
16�G(H=2�) � H=mPl. At postination horizon crossing their amplitude

is unchanged.
Finally, let me write the horizon-crossing amplitudes of the scalar and tensor

metric perturbations in terms of the inationary potential,

(Æ�=�)HOR;� = cS

 
V 3=2

mPl
3V 0

!
1

; (27)

hHOR;� = cT

 
V 1=2

mPl
2

!
1

; (28)

where (Æ�=�)HOR;� is the amplitude of the density perturbation on the scale � when
it crosses the Hubble radius during the post-ination epoch, hHOR;� is the dimension-
less amplitude of the gravitational wave perturbation on the scale � when it crosses
the Hubble radius, and cS, cT are numerical constants of order unity. Subscript 1
indicates that the quantity involving the scalar potential is to be evaluated when the
scale in question crossed outside the horizon during the inationary era. The met-
ric perturbations produced by ination are characterized by almost scale-invariant
horizon-crossing amplitudes; the slight deviations from scale invariance result from
the variation of V and V 0 during ination which enter through the dependence upon
t1. [In Eq. (27) I got ahead of myself and used the slow-roll approximation (see
below) to rewrite the expression, (Æ�=�)HOR;� ' HV 0= _�, in terms of the potential
only.]

Eqs. (24-27) are the fundamental equations that govern ination and the produc-
tion of metric perturbations. It proves very useful to recast these equations using
the scalar �eld as the independent variable; we then express the scalar and tensor
perturbations in terms of the value of the potential, its steepness, and the rate of
change of its steepness when the interesting scales crossed outside the Hubble radius
during ination, about 50 e-folds in scale factor before the end of ination, de�ned
by

V50 � V (�50); x50 � mPlV
0(�50)

V (�50)
; x050 =

mPlV
00(�50)

V (�50)
� mPl[V 0(�50)]2

V 2(�50)
:
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To evaluate these three quantities 50 e-folds before the end of ination we must
�nd the value of the scalar �eld at this time. During the inationary phase the ��
term is negligible (the motion of � is friction dominated), and Eq. (24) becomes

_� ' �V
0(�)

3H
; (29)

this is known as the slow-roll approximation [47]. While the slow-roll approximation
is almost universally applicable, there are models where the slow-roll approximation
cannot be used; e.g., a potential where during the crucial 8 e-folds the scalar �eld
rolls uphill, \powered" by the velocity it had when it hit the incline.

The conditions that must be satis�ed in order that �� be negligible are:

jV 00j < 9H2 ' 24�V=mPl
2; (30)

jxj � jV 0mPl=V j <
p
48�: (31)

The end of the slow roll occurs when either or both of these inequalities are saturated,
at a value of � denoted by �end. Since H � _R=R, or Hdt = d lnR, it follows that

d lnR =
8�

mPl
2

V (�)d�

�V 0(�)
= � 8�d�

mPl x
: (32)

Now express the cosmic-scale factor in terms of is value at the end of ination, Rend,
and the number of e-foldings before the end of ination, N(�),

R = exp[�N(�)]Rend:

The quantity N(�) is a time-like variable whose value at the end of ination is zero
and whose evolution is governed by

dN

d�
=

8�

mPl x
: (33)

Using Eq. (33) we can compute the value of the scalar �eld 50 e-folds before the end
of ination (� �50); the values of V50, x50, and x050 follow directly.

As � rolls down its potential during ination its energy density decreases, and so
the growth in the scale factor is not exponential. By using the fact that the stress-
energy of the scalar �eld takes the perfect-uid form, we can solve for evolution of the
cosmic-scale factor. Recall, for the equation of state p = �, the scale factor grows
as R / tq, where q = 2=3(1 + ). Here,

 =
1
2
_�2 � V

1
2
_�2 + V

=
x2 � 48�

x2 + 48�
; (34)

q =
1

3
+
16�

x2
: (35)
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Since the steepness of the potential can change during ination,  is not in general
constant; the power-law index q is more precisely the logarithmic rate of the change
of the logarithm of the scale factor, q = d lnR=d ln t.

When the steepness parameter is small, corresponding to a very at potential, 
is close to �1 and the scale factor grows as a very large power of time. To solve
the horizon problem the expansion must be \superluminal" ( �R > 0), corresponding

to q > 1, which requires that x2 < 24�. Since 1
2
_�2=V = x2=48�, this implies that

1
2
_�2=V (�) < 1

2
, justifying neglect of the scalar-�eld kinetic energy in computing the

expansion rate for all but the steepest potentials. (In fact there are much stronger
constraints; the COBE DMR data imply that n >� 0:5, which restricts x250 <� 4�,
1
2
_�2=V <� 1

12
, and q >� 4.)

Next, let us relate the size of a given scale to when that scale crosses outside the
Hubble radius during ination, speci�ed by N1(�), the number of e-folds before the
end of ination. The physical size of a perturbation is related to its comoving size,
�phys = R�; with the usual convention, Rtoday = 1, the comoving size is the physical
size today. When the scale � crosses outside the Hubble radius R1� = H�1

1 . We
then assume that: (1) at the end of ination the energy density isM4 ' V (�end); (2)
ination is followed by a period where the energy density of the Universe is dominated
by coherent scalar-�eld oscillations which decrease as R�3; and (3) when value of the
scale factor is RRH the Universe reheats to a temperature TRH '

p
mPl� and expands

adiabatically thereafter. The \matching equation" that relates � and N1(�) is:

� =
Rtoday

R1
H�1
1 =

Rtoday

RRH

RRH

Rend

Rend

R1
H�1
1 : (36)

Adiabatic expansion since reheating implies Rtoday=RRH ' TRH=2:73K; and the de-
cay of the coherent scalar-�eld oscillations implies (RRH=Rend)3 = (M=TRH)4. If
we de�ne �q = ln(Rend=R1)= ln(tend=t1), the mean power-law index, it follows that
(Rend=R1)H

�1
1 = exp[N1(�q � 1)=�q]H�1

end, and Eq. (36) becomes

N1(�) =
�q

�q � 1

�
48 + ln�Mpc +

2

3
ln(M=1014GeV) +

1

3
ln(TRH=10

14GeV)
�
; (37)

In the case of perfect reheating, which probably only applies to �rst-order ination,
TRH 'M.

The scales of astrophysical interest today range roughly from that of galaxy size,
� � Mpc, to the present Hubble scale, H�1

0 � 104Mpc; up to the logarithmic
corrections these scales crossed outside the horizon between about N1(�) � 48 and
N1(�) ' 56 e-folds before the end of ination. That is, the interval of ination that
determines its all observable consequences covers only about 8 e-folds.

Except in the case of strict power-law ination q varies during ination; this means
that the (Rend=R1)H

�1
1 factor in Eq. (36) cannot be written in closed form. Taking

account of this, the matching equation becomes a di�erential equation,

d ln �Mpc

dN1
=
q(N1)� 1

q(N1)
; (38)
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subject to the \boundary condition:"

ln�Mpc = �48� 4

3
ln(M=1014GeV) +

1

3
ln(TRH=10

14GeV)

for N1 = 0, the matching relation for the mode that crossed outside the Hubble radius
at the end of ination. Equation (38) allows one to obtain the precise expression for
when a given scale crossed outside the Hubble radius during ination. To actually
solve this equation, one would need to supplement it with the expressions dN=d� =
8�=mPlx and q = 16�=x2. For our purposes we need only know: (1) The scales of
astrophysical interest correspond to N1 � \50 � 4," where for de�niteness we will
throughout take this to be an equality sign. (2) The expansion of Eq. (38) about
N1 = 50,

�N1(�) =

 
q50 � 1

q50

!
�ln�Mpc; (39)

which, with the aid of Eq. (33), implies that

�� =

 
q50 � 1

q50

!
x50
8�

��Mpc: (40)

We are now ready to express the perturbations in terms of V50, x50, and x050. First,
we must solve for the value of �, 50 e-folds before the end of ination. To do so we
use Eq. (33),

N(�50) = 50 =
8�

mPl
2

Z �50

�end

V d�

V 0
: (41)

Next, with the help of Eq. (40) we expand the potential V and its steepness x about
�50:

V ' V50 + V 0
50(�� �50) = V50

"
1 +

x250
8�

 
q50

q50 � 1

!
�ln�Mpc

#
; (42)

x ' x50 + x050(�� �50) = x50

"
1 +

mPlx
0
50

8�

 
q50

q50 � 1

!
�ln�Mpc

#
; (43)

of course these expansions only make sense for potentials that are smooth. We note
that additional terms in either expansion are O(�2i ) and beyond the accuracy we are
seeking.

Now recall the equations for the amplitude of the scalar and tensor perturbations,

(Æ�=�)HOR;� = cS

 
V 1=2

mPl
2x

!
1

; (44)

hHOR;� = cT

 
V 1=2

mPl
2

!
1

; (45)

where subscript 1 means that the quantities are to be evaluated where the scale �
crossed outside the Hubble radius, N1(�) e-folds before the end of ination. The
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origin of any deviation from scale invariance is clear: For tensor perturbations it
arises due to the variation of the potential; and for scalar perturbations it arises due
to the variation of both the potential and its steepness.

Using Eqs. (39-44) it is now simple to calculate the power-law exponents �S and
�T that quantify the deviations from scale invariance,

�T =
x250
16�

q50
q50 � 1

' x250
16�

; (46)

�S = �T � mPlx
0
50

8�

q50
q50 � 1

' x250
16�

� mPlx
0
50

8�
; (47)

where

q50 =
1

3
+
16�

x250
' 16�

x250
; (48)

hHOR;� = cT

0
@V 1=2

50

mPl
2

1
A � �T

Mpc ; (49)

(Æ�=�)HOR;� = cS

0
@ V

1=2
50

x50mPl
2

1
A � �S

Mpc : (50)

The spectral indices �i are de�ned as, �S = [d ln(Æ�=�)HOR;�=d ln �Mpc]50 and �T =
[d lnhHOR;�=d ln�Mpc]50, and in general vary slowly with scale. Note too that the
deviations from scale invariance, quanti�ed by �S and �T , are of the order of x250,
mPlx

0
50. In the expressions above we retained only lowest-order terms in O(�i). The

next-order contributions to the spectral indices are O(�2i ); those to the amplitudes
are O(�i) and are given two sections hence. The justi�cation for truncating the
expansion at lowest order is that the deviations from scale invariance are expected to
be small|and are required by astrophysically data to be small.

As I discuss in more detail two sections hence, the more intuitive power-law indices
�S, �T are related to the indices that are usually used to describe the power spectra
of scalar and tensor perturbations, PS(k) � jÆkj2 = Akn and PT (k) � jhkj2 = ATk

nT ,

n = 1 � 2�S = 1� x250
8�

+
mPlx

0
50

4�
; (51)

nT = �2�T = �x
2
50

8�
: (52)

(53)

CBR temperature uctuations on large-angular scales (� >� 1Æ) due to metric
perturbations arise through the Sachs-Wolfe e�ect; very roughly, the temperature
uctuation on a given angular scale � is related to the metric uctuation on the
length scale that subtends that angle at last scattering, � � 100h�1 Mpc(�=deg), 

ÆT

T

!
�

�
 
Æ�

�

!
HOR;�

; (54)
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ÆT

T

!
�

� hHOR;�; (55)

where the scalar and tensor contributions to the CBR temperature anisotropy on
a given scale add in quadrature. Let me be more speci�c about the amplitude of
the quadrupole CBR anisotropy. For small �S , �T the contributions of each to the
quadrupole CBR temperature anisotropy:

�
�T

T0

�2
Q�S

� 32�

45

V50
mPl

4x250
; (56)

�
�T

T0

�2
Q�T

� 0:61
V50
mPl

4
; (57)

T

S
� (�T=T0)2Q�T

(�T=T0)2Q�S
� 0:28x250; (58)

where expressions have been evaluated to lowest order in x250 and mPlx
0
50. In terms

of the spherical-harmonic expansion of the CBR temperature anisotropy, the square
of the quadrupole anisotropy is de�ned to be

Pm=2
m=�2 ja2mj2=4�.

So what are these quantities precisely? Ination makes statistical predictions.
The underlying density perturbations are gaussian and the expression for jÆkj2 is sim-
ply the variance of the gaussian distribution for Æk. Because the predicted multipole
amplitudes alm depend linearly upon Æk and hk, the distribution of multipole ampli-
tudes is gaussian, with variance � hjalmj2i. This underlying variance is comprised of
scalar and tensor contributions.

How accurately can one hope to estimate the actual variance of the underlying
distribution? If one had an ensemble of observers distributed throughout the Universe
who each measured the CBR anisotropy at their position, then one could determine
the underlying variance to arbitrary precision by averaging their jalmj2's (hence the
notation hjalmj2i for the underlying variance). However, we are privy to but one
CBR sky and for multipole l, only 2l + 1 multipole amplitudes. Thus, we can only
estimate the actual variance with �nite precision. This is nothing other than ordinary
sampling variance, but is often called \cosmic variance." The sampling variance of
hjalmj2i|which is the irreducible uncertainty in measuring hjalmj2i|is simply given
by 2hjalmj2i2=(2l + 1). The distribution of the measured value of hjalmj2iMEAS is just
the �2 distribution for 2l + 1 degrees of freedom.

Before going on, some general remarks [68]. The steepness parameter x250 must
be less than about 24� to ensure superluminal expansion. For \steep" potentials,
the expansion rate is \slow," i.e., q50 closer to unity, the gravity-wave contribution
to the quadrupole CBR temperature anisotropy becomes comparable to, or greater
than, that of density perturbations, and both scalar and tensor perturbations exhibit
signi�cant deviations from scale invariance. For \at" potentials, i.e., small x50, the
expansion rate is \fast," i.e., q50 � 1, the gravity-wave contribution to the quadrupole
CBR temperature anisotropy is much smaller than that of density perturbations, and
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the tensor perturbations are scale invariant. Unless the steepness of the potential
changes rapidly, i.e., large x050, the scalar perturbations are also scale invariant.

3.1 Metric perturbations and CBR anisotropy

I was purposefully vague when discussing the amplitudes of the scalar and tensor
modes, except when specifying their contributions to the quadrupole CBR temper-
ature anisotropy; in fact, the spectral indices �S and �T , together with the scalar
and tensor contributions to the CBR quadrupole serve to provide all the information
necessary. Here I will �ll in more details about the metric perturbations.

The scalar and tensor metric perturbations are expanded in harmonic functions,
in the at Universe predicted by ination, plane waves,

h��(x; t) =
1

(2�)3

Z
d3k hik(t) "

i
�� e

�ik�x; (59)

Æ�(x; t)

�
=

1

(2�)3

Z
d3k Æk(t) e

�ik�x; (60)

where h�� = R�2g�� � ��� , "i�� is the polarization tensor for the gravity-wave modes,
and i = +, � are the two polarization states. Everything of interest can be computed
in terms of hik and Æk. For example, the rms mass uctuation in a sphere of radius
r is obtained in terms of the window function for a sphere and the power spectrum
PS(k) � hjÆkj2i (see below),

h(ÆM=M)2ir = 9

2�2r2

Z 1

0
[j1(kr)]

2 PS(k)dk; (61)

where j1(x) is the spherical Bessel function of �rst order. If PS(k) is a power law,
it follows roughly that (ÆM=M)2 � k3jÆkj2, evaluated on the scale k = r�1. This is
what I meant by (Æ�=�)HOR;�: the rms mass uctuation on the scale � when it crossed
inside the horizon. Likewise, by hHOR;� I meant the rms strain on the scale � as it
crossed inside the Hubble radius, (hHOR;�)2 � k3jhikj2.

In the previous discussions I have chosen to specify the metric perturbations for the
di�erent Fourier modes when they crossed inside the horizon, rather than at a common
time. I did so because scale invariance is made manifest, as the scale independence
of the metric perturbations at post-ination horizon crossing. Recall, in the case
of scalar perturbations (Æ�=�)HOR is up to a numerical factor the uctuation in the
Newtonian potential, and, by specifying the scalar perturbations at horizon crossing,
we avoid the discussion of scalar perturbations on superhorizon scales, which is beset
by the subtleties associated with the gauge noninvariance of Æk.

It is, however, necessary to specify the perturbations at a common time to carry
out most calculations; e.g., an N -body simulation of structure formation or the cal-
culation of CBR anisotropy. To do so, one has to take account of the evolution of
the perturbations after they enter the horizon. After entering the horizon tensor per-
turbations behave like gravitons, with hk decreasing as R�1 and the energy density
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associated with a given mode, �k � mPl
2k5jhkj2=R2, decreasing as R�4. The evolu-

tion of scalar perturbations is slightly more complicated; modes that enter the horizon
while the Universe is still radiation dominated remain essentially constant until the
Universe becomes matter dominated (growing only logarithmically); modes that enter
the horizon after the Universe becomes matter dominated grow as the scale factor.
(The gauge noninvariance of Æk is not an important issue for subhorizon size modes.
A Newtonian analysis suÆces, and there is only one growing mode, corresponding to
a density perturbation.)

The method for characterizing the scalar perturbations is by now standard: The
spectrum of perturbations is speci�ed at the present epoch (assuming linear growth
for all scales); the spectrum at earlier epochs can be obtained by multiplying Æk by
R(t)=Rtoday. The inationary metric perturbations are gaussian; thus Æk is a gaussian,
random variable. Its statistical expectation value is

hÆk Æqi = PS(k)(2�)
3Æ(3)(k� q); (62)

where the power spectrum today is written as

PS(k) � AknT (k)2; (63)

n = 1�2�S (= 1 for scale-invariant perturbations), and T (k) is the \transfer function"
which encodes the information about the post-horizon crossing evolution of each mode
and depends upon the matter content of the Universe, e.g., baryons plus cold dark
matter, baryons plus hot dark matter, baryons plus hot and cold dark matter, and
so on. The transfer function is de�ned so that T (k)! 1 for k ! 0 (long-wavelength
perturbations); an analytic approximation to the cold dark matter transfer function
is given by [69]

T (k) =
ln(1 + 2:34q)=2:34q

[1 + (3:89q) + (16:1q)2 + (5:46q)3 + (6:71q)4]1=4
; (64)

where q = k=(
0h
2Mpc�1). Inationary power spectra for di�erent dark matter

possibilities are shown in Fig. 9.
The overall normalization factor

A =
1024�3

75H4
0

V50
mPl

4x250

[1 + 7
6nT � 1

3(n � 1)]
n
�[32 � 1

2(n � 1)]
o2

2n�1[�(32)]
2

k1�n50 ; (65)

where the O(�i) correction to A has been included [70]. The quantity nT = �2�T =
�x250=8�, n� 1 = �2�S = nT + x050=4�, k50 is the comoving wavenumber of the scale
that crossed outside the horizon 50 e-folds before the end of ination. All the formulas
below simplify if this scale corresponds to the present horizon scale, speci�cally, k50 =
H0=2. [Eq. (65) can be simpli�ed by expanding �(3

2
+x) = �(3=2)[1+x(2�2 ln 2�)],

valid for jxj � 1;  ' 0:577 is Euler's constant.]
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Figure 7: Comparison of the cold dark matter perturbation spectrum with CBR

anisotropy measurements (boxes) and the distribution of galaxies today (triangles).

Wavenumber k is related to length scale, k = 2�=�; error ags are not shown for

the galaxy distribution. The curve labeled MDM is hot + cold dark matter (\5 eV"

worth of neutrinos); the other two curves are cold dark matter models with Hubble

constants of 50 km s�1Mpc (labeled CDM) and 35 km s�1Mpc. (Figure courtesy of

M. White.)
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From this expression it is simple to compute the Sachs-Wolfe contribution of scalar
perturbations to the CBR temperature anisotropy; on angular scales much greater
than about 1Æ (corresponding to multipoles l� 100) it is the dominant contribution.
It is useful to expand the CBR temperature on the sky in spherical harmonics,

ÆT (�; �)

T0
=

l=1;m=lX
l�2;m=�l

almYlm(�; �); (66)

where T0 = 2:73K is the CBR temperature today and the dipole term is subtracted
out because it is cannot be separated from that arising due to our motion with respect
to the cosmic rest frame. The predicted variance due to scalar perturbations is given
by

hjalmj2i =
H4
0

2�

Z 1

0
k�2 PS(k) jjl(kr0)j2 dk; (67)

' A2n�1H4
0 r

1�n
0

16

�(l + 1
2n� 1

2)�(3 � n)

�(l � 1
2n +

5
2)[�(2 � 1

2n)]
2
; (68)

where r0 � 2H�1
0 is the comoving distance to the last scattering surface, and this

expression is for the Sachs-Wolfe contribution from scalar perturbations only. For n
not too di�erent from one the expectation for the square of the quadrupole anisotropy
is �

�T

T0

�2
Q�S

� 5ja2mj2
4�

� 32�

45

V50
mPl

4 x250
(k50r0)

1�n: (69)

(By choosing k50 = r�10 = 1
2
H0, the last factor becomes unity.)

The ensemble expectation for the multipole amplitudes is often referred to as the
angular power spectrum because they encode the full information about predicted
CBR anisotropy. For example, the rms temperature uctuation on a given angular
scale is related to the multipole amplitudes

�
�T

T

�2
�
� l2hjalmj2i for l ' 200Æ=�: (70)

The procedure for specifying the tensor modes is similar, cf. Refs. [71, 72]. For
the modes that enter the horizon after the Universe becomes matter dominated, k <�
0:1h2Mpc, which are the only modes that contribute signi�cantly to CBR anisotropy
on angular scales greater than a degree,

hik(� ) = ai(k)

 
3j1(k� )

k�

!
; (71)

where � = r0(t=t0)1=3 is conformal time. [For the modes that enter the horizon during
the radiation-dominated era, k >� 0:1h2Mpc�1, the factor 3j1(k� )=k� is replaced by
j0(k� ) for the remainder of the radiation era. In either case, the factor involving the
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spherical Bessel function quanti�es the fact that tensor perturbations remain constant
while outside the horizon, and after horizon crossing decrease as R�1.]

The tensor perturbations too are characterized by a gaussian, random variable,
here written as ai(k); the statistical expectation

hhikhjqi = PT (k)(2�)
6Æ(3)(k� q)Æij; (72)

where the power spectrum

PT (k) = ATk
nT�3

"
3j1(k� )

k�

#2
; (73)

AT =
8

3�

V50
mPl

4

(1 + 5
6
nT )[�(

3
2
� 1

2
nT )]2

2nT [�(32)]
2

k�nT50 ; (74)

where the O(�i) correction to AT has been included. Note that nT = �2�T is zero
for scale-invariant perturbations.

Finally, the contribution of tensor perturbations to the multipole amplitudes,
which arise solely due to the Sachs-Wolfe e�ect [31, 71, 72], is given by

hjalmj2i ' 36�2
�(l + 3)

�(l � 1)

Z 1

0
knT+1AT jFl(k)j2 dk; (75)

where

Fl(k) = �
Z r0

rD

dr
j2(kr)

kr

"
jl(kr0 � kr)

(kr0 � kr)2

#
; (76)

and rD = r0=(1+zD)1=2 � r0=35 is the comoving distance to the horizon at decoupling
(= conformal time at decoupling). Equation (75) is approximate in that very short
wavelength modes, kr0 � 100, that crossed inside the horizon before matter-radiation
equality have not been properly taken into account; to take them into account, the
integrand must be multiplied by a transfer function,

T (k) ' 1:0 + 1:44(k=kEQ) + 2:54(k=kEQ)
2; (77)

where kEQ � H0=(2
p
2 � 2)R1=2

EQ is the scale that entered the horizon at matter
radiation equality [68]. In addition, for l >� 1000, the �nite thickness of the last-
scattering surface must be taken into account.

The tensor contribution to the quadrupole CBR temperature anisotropy for nT
not too di�erent from zero is

�
�T

T0

�2
Q�T

� 5ja2mj2
4�

' 0:61
V50
mPl

4
(k50r0)

�nT ; (78)

where the integrals in the previous expressions have been evaluated numerically.
Both the scalar and tensor contributions to a given multipole are dominated by

wavenumbers kr0 � l. For scale-invariant perturbations and small l, both the scalar
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and tensor contributions to (l+ 1
2
)2hjalmj2i are approximately constant. The contribu-

tion of scalar perturbations to (l+ 1
2
)2hjalmj2i begins to decrease for l � 150 because

the scalar contribution to these multipoles is dominated by modes that entered the
horizon before matter domination (and hence are suppressed by the transfer function).
The contribution of tensor modes to (l+ 1

2
)2hjalmj2i begins to decrease for l � 30 be-

cause the tensor contribution to these multipoles is dominated by modes that entered
the horizon before decoupling (and hence decayed as R�1 until decoupling). Figure
10 shows the contribution of scalar and tensor perturbations to the CBR anisotropy
multipole amplitudes (and includes both the tensor and scalar transfer functions);
the expected variance in the CBR multipoles is given by the sum of the scalar and
tensor contributions.

3.2 Worked examples

In this Section I apply the formalism developed in the two previous sections to four
speci�c models. So that I can, where appropriate, solve numerically for model param-
eters, I will: (1) Assume that the astrophysically interesting scales crossed outside the
horizon 50 e-folds before the end of ination; and (2) Use the COBE DMR quadrupole
measurement, h(�T )2Qi1=2 � 20�2�K [11, 74], to normalize the scalar perturbations;
using Eq. (56) this implies

V50 � 2:3� 10�11mPl
4 x250: (79)

Of course it is entirely possible that a signi�cant portion of the quadrupole anisotropy
is due to tensor-mode perturbations, in which case this normalization must be reduced
by a factor of (1 + T=S)�1. And, it is straightforward to change \50" to the number
appropriate to a speci�c model, or to normalize the perturbations another way.

Before going on let us use the COBE DMR quadrupole anisotropy to bound the
tensor contribution to the quadrupole anisotropy and thereby the energy density that
drives ination:

V50 <� 7� 10�11mPl
4: (80)

Thus, the upper limit to the tensor contribution to the CBR quadrupole implies
that the vacuum energy that drives ination must be much less than the Planck
energy density, indicating that the �nal 50 or so e-foldings of ination, which is the
relevant part of ination for us, is not a quantum-gravitational phenomenon. Of
course, ination could last far longer than 50 e-foldings and during the earliest part
of ination the energy density could be Planckian (this is the point of view advocated
by Linde in his chaotic ination model [46]).

3.2.1 Exponential potentials

There are a class of models that can be described in terms of an exponential potential,

V (�) = V0 exp(���=mPl): (81)
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Figure 8: Scalar and tensor contributions to the CBR multipole moments: l(l +

1)hjalmj2i=6hja2mj2i for the scalar and l(l + 1
2)hjalmj2i=5hja2mj2i for the tensor with

n � 1 = nT = 0, zDEC = 1100, and h = 0:5 (from [73]). (The tensor angular power

spectrum falls o� for l � 30.) Scale invariance manifests itself in the constancy of the

angular power spectra for l <� 100. Note, only the Sachs-Wolfe contribution is shown;

for scalar perturbations other e�ects become dominant for l >� 100 and the spectrum

rises to a \Doppler peak" at around l � 200, cf. Fig 3.
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This type of potential was �rst invoked in the context of power-law ination [75], and
has recently received renewed interest in the context of extended ination [76]. In
the simplest model of extended, or �rst-order, ination, that based upon the Brans-
Dicke-Jordan theory of gravity [76], � is related to the Brans-Dicke parameter: �2 =
64�=(2! + 3).

For such a potential the slow-roll conditions are satis�ed provided that �2 <� 24�;
thus ination does not end until the potential changes shape, or in the case of extended
ination, until the phase transition takes place. In either case we can relate �50 to
�end,

N(�50) = 50 =
8�

mPl
2

Z �end

�50

V d�

�V 0
; ) �50 = �end � 50�=8�: (82)

Since �end is in e�ect arbitrary, the overall normalization of the potential is irrelevant.
The two other parameters, x50 and x050, are easy to compute:

x50 = ��; x050 = 0: (83)

Using the COBE DMR normalization, we can relate V50 and �:

V50 = 2:3 � 10�11mPl
4�2: (84)

Further, we can compute q, �S, �T , and T=S:

q = 16�=�2; T=S = 0:28�2; �T = �S = 1=(q � 1) ' �2=16�: (85)

Note, for the exponential potential, q, �T = �S are independent of epoch. In the case
of extended ination, �S = �T = 4=(2!+3); since ! must be less than about 20 [78],
this implies signi�cant tilt: �S = �T >� 0:1.

3.2.2 Chaotic ination

The simplest chaotic ination models are based upon potentials of the form:

V (�) = a�b; (86)

b = 4 corresponds to Linde's original model of chaotic ination and a is dimensionless
[46], and b = 2 is a model based upon a massive scalar �eld and m2 = 2a [79]. In
these models � is initially displaced from � = 0, and ination occurs as � slowly rolls
to the origin. The value of �end is easily found: �2end = b(b� 1)mPl

2=24�, and

N(�50) = 50 =
8�

mPl
2

Z �50

�end

V d�

V 0
; (87)

) �250=mPl
2 = 50b=4� + b2=48� ' 50b=4�; (88)

the value of �50 is a few times the Planck mass.
For purposes of illustration consider b = 4; �end = mPl=

p
2� ' 0:4mPl, �50 ' 4mPl,

�46 ' 3:84mPl, and �54 ' 4:16mPl. In order to have suÆcient ination the initial value
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of � must exceed about 4:2mPl; ination ends when � � 0:4mPl; and the scales of
astrophysical interest cross outside the horizon over an interval �� ' 0:3mPl.

The values of the potential, its steepness, and the change in steepness are easily
found,

V50 = amPl
b

 
50b

4�

!b=2
; x50 =

s
4�b

50
; mPlx

0
50 =

�4�
50

; (89)

q50 = 200=b; T=S = 0:07b; �T ' b=200; �S = �T + 0:01: (90)

Unless b is very large, scalar perturbations dominate tensor perturbations [80], �T ,
�S are very small, and q is very large. Further, when �T , �S become signi�cant, they
are equal. Using the COBE DMR normalization we �nd:

a = 2:3� 10�11b1�b=2(4�=50)b=2+1mPl
4�b: (91)

For the two special cases of interest: b = 4, a = 9 � 10�14; and b = 2, m2 � 2a =
3� 10�12mPl

2.

3.2.3 New ination

These models entail a very at potential where the scalar �eld rolls from � � 0 to
the minimum of the potential at � = �. The original models of slow-rollover ination
[81] were based upon potentials of the Coleman-Weinberg form

V (�) = B�4=2 +B�4
�
ln(�2=�2)� 1

2

�
; (92)

where B is a very small dimensionless coupling constant. Other very at potentials
also work (e.g., V = V0 � ��4 + ��6 [47]). As before we �rst solve for �50:

N(�50) = 50 =
8�

mPl
2

Z �50

�end

V d�

V 0
; ) �250 =

��4

100j ln(�250=�2)jmPl
2
; (93)

where the precise value of �end is not relevant, only the fact that it is much larger
than �50. Provided that � <� mPl, both �50 and �end are much less than �; we then
�nd

V50 ' B�4=2; x50 ' � (�=25)3=2q
j ln(�250=�2j)

�
�

mPl

�2
� 1; (94)

mPlx
0
50 ' �24�=100; q50 ' 2:5� 105j ln(�250=�2)j

�2

�
mPl

�

�4
� 1; (95)

�T ' 1

q50
� 1; �S = �T + 0:03;

T

S
' 6 � 10�4

j ln(�250=�2)j
�
�

mPl

�4
: (96)

Provided that � <� mPl, x50 is very small; this means that q is very large, gravity-
waves and density perturbations are very nearly scale invariant, and T=S is small.
Finally, using the COBE DMR normalization, we can determine the dimensionless
coupling constant B:

B ' 9� 10�14=j ln(�250=�2)j � 4� 10�15: (97)
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3.2.4 Natural ination

This model is based upon a potential of the form [55]

V (�) = �4 [1 + cos(�=f)] : (98)

The atness of the potential (and requisite small couplings) arise because the � par-
ticle is a pseudo-Nambu-Goldstone boson (f is the scale of spontaneous symmetry
breaking and � is the scale of explicit symmetry breaking; in the limit that � ! 0
the � particle is a massless Nambu-Goldstone boson). It is a simple matter to show
that �end is of the order of �f .

This potential is diÆcult to analyze in general; however, there are two limiting
regimes: (i) f � mPl; and (ii) f <� mPl [47]. In the �rst regime, the 50 or so relevant
e-folds take place close to the minimum of the potential, � = �f , and ination can
be analyzed by expanding the potential about � = �,

V ( ) ' m2 2=2; (99)

m2 = �4=f2;  = �� �: (100)

In this regime natural ination is equivalent to chaotic ination with m2 = �4=f2 '
3� 10�12mPl

2.
In the second regime, f <� mPl, ination takes place when � <� �f , so that we can

make the following approximations: V ' 2�4 and V 0 = ��4�=f2. Taking �end � �f ,
we can solve for N(�):

N(�) =
8�

mPl
2

Z �f

�

V d�

�V 0
' 16�mPl

2

f2
ln(�f=�); (101)

from which it is clear that achieving 50 e-folds of ination places a lower bound to f ,
very roughly f >� mPl=3 [47, 55].

Now we can solve for �50, V50, x50, and x050:

�50=�f ' exp(�50mPl
2=16�f2) <� O(0:1); V50 ' 2�4; (102)

x50 ' 1

2

mPl

f

�50
f

<� O(0:1); x050 ' �
1

2

 
mPl

f

!2
: (103)

Using the COBE DMR normalization, we can relate � to f=mPl:

�=mPl = 7� 10�4
s
mPl

f
exp(�25mPl

2=16�f2): (104)

Further, we can solve for T=S, �T , and �S:

T

S
' 0:07

 
mPl

f

!2  
�50
f

!2
<� O(0:1); (105)
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�T =
1

16�

q50
q50 � 1

 
1

4

mPl
2

f2
�250
f2

!
� 1

64�

 
mPl

f

!2  
�50
f

!2
� 0:1; (106)

�S =
1

16�

q50
q50 � 1

 
1

4

mPl
2

f2
�250
f2

+
mPl

2

f2

!
� 1

16�

 
mPl

f

!2
; (107)

q50 = 64�

 
f

mPl

!2  
f

�50

!2
� 1: (108)

Regime (ii) provides the exception to the rule that �S � �T and large �S implies
large T=S. For example, taking f = mPl=2, we �nd:

�50=f � 0:06; x50 � 0:06; x050 = �2; q50 � 104; (109)

�T � 10�4; �S � 0:08; T=S � 10�3: (110)

The gravitational-wave perturbations are very nearly scale invariant, while the density
perturbations deviate signi�cantly from scale invariance. I note that regime (ii), i.e.,
f <� mPl, occupies only a tiny fraction of parameter space because f must be greater
than about mPl=3 to achieve suÆcient ination; further, regime (ii) is \�ne tuned"
and \unnatural" in the sense that the required value of � is exponentially sensitive
to the value of f=mPl.

Finally, I note that the results for regime (ii) apply to any inationary model whose
Taylor expansion in the inationary region is similar; e.g., V (�) = �m2�2+��4, which
was originally analyzed in Ref. [47].

3.2.5 Lessons

To summarize the general features of our results. In all examples the deviations
from scale invariance enhance perturbations on large scales. The only potentials that
have signi�cant deviations from scale invariance are either very steep or have rapidly
changing steepness. In the former case, both the scalar and tensor perturbations are
tilted by a similar amount; in the latter case, only the scalar perturbations are tilted.

For \steep" potentials, the expansion rate is \slow," i.e., q50 close to unity, the
gravity-wave contribution to the CBR quadrupole anisotropy becomes comparable
to, or greater than, that of density perturbations, and both scalar and tensor per-
turbations are tilted signi�cantly. For at potentials, i.e., small x50, the expansion
rate is \fast," i.e., q50 � 1, the gravity-wave contribution to the CBR quadrupole
is much smaller than that of density perturbations, and unless the steepness of the
potential changes signi�cantly, large x050, both spectra very nearly scale invariant;
if the steepness of the potential changes rapidly, the spectrum of scalar perturba-
tions can be tilted signi�cantly. The models that permit signi�cant deviations from
scale invariance involve exponential or low-order polynomial potentials; the former by
virtue of their steepness, the latter by virtue of the rapid variation of their steepness.
Exponential potentials are of interest because they arise in extended ination models;
potentials with rapidly steepness include V (�) = �m2�2 + ��4 or �4[1 + cos(�=f)].
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Finally, to illustrate how observational data could used to determine the properties
of the inationary potential and test the consistency of the inationary hypothesis,
suppose observations determined the following:

(�T )Q ' 16�K; T=S = 0:24; n = 0:9; (111)

that is, the COBE DMR quadrupole anisotropy, a four to one ratio of scalar to
tensor contribution to the CBR quadrupole, and spectral index of 0.9 for the scalar
perturbations. From T=S, we determine the steepness of the potential: x50 ' 0:94.

From the steepness and the quadrupole anisotropy the value of the potential: V
1=4
50 '

2:4 � 1016GeV. From the spectral index the change in steepness: x050 ' �0:81=mPl.
These data can also be expressed in terms of the value of the potential and its �rst
two derivatives:

V50 = 1:4� 10�11mPl
4; V 0

50 = 1:5� 10�11mPl
3; V 00

50 = 1:0� 10�12mPl
2: (112)

Further, they the lead to the prediction: nT = �0:035, which, when \measured," can
be used as a consistency check for ination.

4 STRUCTURE FORMATION: CRUCIAL TEST

OF INFLATION

The key to testing ination is to focus on its robust predictions and their implications.
Earlier I discussed the prediction of a at Universe and its bold implication that most
of the matter in Universe exists in the form of particle dark matter. Much e�ort is
being directed at determining the mean density of the Universe and detecting particle
dark matter.

The scale-invariant scalar metric perturbations lead to CBR anisotropy on angular
scales from less than 1Æ to 90Æ and seed the formation of structure in the Universe.
Together with the nucleosynthesis determination of 
B and the inationary predic-
tion of a at Universe, scale-invariant density perturbations lead to a very speci�c
scenario for structure formation; it is known as cold dark matter because the bulk of
the particle dark matter is comprised of slowly moving particles (e.g., axions or neu-
tralinos) [82].8 A large and rapidly growing number of observations are being brought

8The simpler possibility, that the particle dark matter exists in the form of 30 eV or so neutrinos

which is known as hot dark matter, was falsi�ed almost a decade ago. Because neutrinos move

rapidly, they can di�use from high density to low density regions damping perturbations on small

scales. In hot dark matter large, supercluster-size objects must form before galaxies, and thus hot

dark matter cannot account for the abundance of galaxies, damped Lyman-� clouds, etc. that is

observed at high redshift.
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to bear in the testing of cold dark matter, making it the centerpiece of e�orts to test
ination.

Finally, there are the scale-invariant tensor perturbations. They lead to CBR
anisotropy on angular scales from a few degrees to 90Æ and a spectrum of gravitational
waves. The CBR anisotropy arising from the tensor perturbations can in principle
be separated from that arising from scalar perturbations. However, because the sky
is �nite, sampling variance sets a fundamental limit: the tensor contribution to CBR
anisotropy can only be separated from that of the scalar if T=S is greater than about
0:14 [83]. It is also possible that the stochastic background of gravitational waves
itself can be directly detected, though it appears that the LIGO facilities being built
will lack the sensitivity and even space-based interferometery (e.g., LISA) is not a
sure bet [84].

Before going on to discuss how cold dark matter models are testing ination I
want to emphasize the importance of the tensor perturbations. The attractiveness
of a at Universe with scale-invariant density perturbations was appreciated long
before ination. Verifying these two predictions of ination, while important, will
not provide a \smoking gun." The tensor perturbations are a unique feature of
ination. Further, they are crucial to obtaining information about the scalar potential
responsible for ination.

4.1 Vanilla Cold Dark Matter: almost, but not quite?

Cold dark matter has often been characterized as a \no parameter model" for struc-
ture formation; that is only true in the broad brush: cold dark matter is characterized
by scale-invariant density perturbations and a matter content that is almost entirely
slowly moving particles. To make predictions of the precision needed to match current
observations, a more speci�c characterization is essential { precise power-law index
of the spectrum of density perturbations, amplitude of tensor perturbations, Hub-
ble constant, baryon density, radiation content of the Universe, possible cosmological
constant, and so on.

Historically, the \standard" version of cold dark matter, vanilla cold dark matter if
you will, is : (1) 
B ' 0:05 and 
CDM � 0:95; (2) Hubble constant of 50 km s�1Mpc�1;
(3) Precisely scale-invariant density perturbations (n = 1); and (4) No contribution
of tensor perturbations to CBR anisotropy. Standard cold dark matter has no other
signi�cance than as a default starting point. Because it became an \industry stan-
dard" vanilla cold dark matter provides an interesting point of comparison { but that
is all!

In cold dark matter models structure forms hierarchically, with small objects
forming �rst and merging to form larger objects. Galaxies form at redshifts of order a
few, and rarer objects like QSOs form from higher than average density peaks earlier.
In general, cold dark matter predicts a Universe that is still evolving at recent epochs.
N -body simulations are crucial to bridging the gap between theory and observation,
and several groups have carried out large numerical studies of vanilla cold dark matter

46



[85].

There are a diversity of observations that test cold dark matter; they include CBR
anisotropy and spectral distortions, redshift surveys, pairwise velocities of galaxies,
peculiar velocities, redshift space distortions, x-ray background, QSO absorption line
systems, cluster studies of all kinds, studies of evolution (clusters, galaxies, and so
on), measurements of the Hubble constant, and on and on. I will focus on how these
measurements probe the power spectrum of density perturbations, emphasizing the
role of CBR-anisotropy measurements and redshift surveys.

Density perturbations on a (comoving) length scale � give rise to CBR anisotropy
on an angular scale � � �=H�1

0 � 1Æ(�=100h�1 Mpc).9 CBR anisotropy has now
been detected by more than ten experiments on angular scales from about 0:5Æ to
90Æ, thereby probing length scales from 30h�1 Mpc to 104h�1Mpc. The very accurate
measurements made by the COBE DMR can be used to normalize the cold dark
matter spectrum (the normalization scale corresponds to about 20Æ). When this is
done, the other ten or so measurements are in agreement with the predictions of cold
dark matter (see Fig. 1).

The COBE-normalized cold dark matter spectrum can be extrapolated to the
much smaller scales probed by redshift surveys, from about 1h�1Mpc to 100h�1 Mpc.
When this is done, there is general agreement. However, on closer inspection the
COBE-normalized spectrum seems to predict excess power on these scales (about a
factor of four in the power spectrum; see Fig. 7). This conclusion is supported by
other observations, e.g., the abundance of rich clusters and the pairwise velocities of
galaxies. It suggests that cold dark matter has much of the truth, but perhaps not
all of it [86], and has led to the suggestion that something needs to be added to the
simplest cold dark matter theory.

There is another important challenge facing cold dark matter. X-ray observations
of rich clusters are able to determine the ratio of hot gas (baryons) to total cluster
mass (baryons + CDM) (by a wide margin, most of the baryons \seen" in clusters
are in the hot gas). To be sure there are assumptions and uncertainties; the data at
the moment indicate that this ratio is (0:04 � 0:08)h�3=2 [22]. If clusters provide a
fair sample of the universal mix of matter, then this ratio should equal 
B=(
B +

CDM) ' (0:009 � 0:022)h�2=(
B + 
CDM). Since clusters are large objects they
should provide a pretty fair sample. Taking the numbers at face value, cold dark
matter is consistent with the cluster gas fraction provided either: 
B + 
CDM = 1
and h � 0:3 or 
B + 
CDM � 0:3 and h � 0:7. The cluster baryon problem has yet
to be settled, and is clearly an important test of cold dark matter.

Finally, before going on to discuss the variants of cold dark matter now under
consideration, let me add a note of caution. The comparison of predictions for struc-
ture formation with present-day observations of the distribution of galaxies is fraught
with diÆculties. Theory most accurately predicts \where the mass is" (in a statisti-

9For reference, perturbations on a length scale of about 1Mpc give rise to galaxies, on about

10Mpc to clusters, on about 30Mpc to large voids, and on about 100Mpc to the great walls.
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cal sense) and the observations determine where the light is. Redshift surveys probe
present-day inhomogeneity on scales from around one Mpc to a few hundred Mpc,
scales where the Universe is nonlinear (ÆnGAL=nGAL >� 1 on scales <� 8h�1Mpc) and
where astrophysical processes undoubtedly play an important role (e.g., star forma-
tion determines where and when \mass lights up," the explosive release of energy in
supernovae can move matter around and inuence subsequent star formation, and so
on). The distance to a galaxy is determined through Hubble's law (d = H�1

0 z) by
measuring a redshift; peculiar velocities induced by the lumpy distribution of mat-
ter are signi�cant and prevent a direct determination of the actual distance. There
are the intrinsic limitations of the surveys themselves: they are ux not volume lim-
ited (brighter objects are seen to greater distances and vice versa) and relatively
small (e.g., the CfA slices of the Universe survey contains only about 104 galaxies
and extends to a redshift of about z � 0:03). Last but not least are the numerical
simulations which link theory and observation; they are limited in dynamical range
(about a factor of 100 in length scale) and in microphysics (in the largest simulations
only gravity, and in others only a gross approximation to the e�ects of hydrodynam-
ics/thermodynamics). Perhaps it would be prudent to withhold judgment on vanilla
cold dark matter for the moment and resist the urge to modify it|but that wouldn't
be as much fun!

4.2 The many avors of cold dark matter

The spectrum of density perturbations today depends not only upon the primeval
spectrum (and the normalization on large scales provided by COBE), but also upon
the energy content of the Universe. While the uctuations in the gravitational poten-
tial were initially (approximately) scale invariant, the Universe evolved from an early
radiation-dominated phase to a matter-dominated phase which imposes a characteris-
tic scale on the spectrum of density perturbations seen today; that scale is determined
by the energy content of the Universe, kEQ � 10�1hMpc�1 (
matterh=

p
g�) (g� counts

the relativistic degrees of freedom, 
matter = 
B +
CDM). In addition, if some of the
nonbaryonic dark matter is neutrinos, they reduce power on small scales somewhat
through freestreaming (see Fig. 7). With this in mind, let me discuss the variants of
cold dark matter that have been proposed to improve its agreement with observations.

1. Low Hubble Constant + cold dark matter (LHC CDM) [87]. Remark-
ably, simply lowering the Hubble constant to around 30 km s�1Mpc�1 solves
all the problems of cold dark matter. Recall, the critical density �crit / H2

0 ;
lowering H0 lowers the matter density and has precisely the desired e�ect. It
has two other added bene�ts: the expansion age of the Universe is comfortably
consistent with the ages of the oldest stars and the baryon fraction is raised to
a value that is consistent with that measured in x-ray clusters. Needless to say,
such a small value for the Hubble constant ies in the face of current observa-
tions [5, 6]; further, it illustrates that the problems of cold dark matter get even
worse for the larger values of H0 that are favored by recent observations.
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2. Hot + cold dark matter (�CDM) [88]. Adding a small amount of hot
dark matter can suppress density perturbations on small scales; adding too
much leads back to the longstanding problems of hot dark matter. Retaining
enough power on very small scales to produce damped Lyman-� systems at
high redshift limits 
� to less than about 20%, corresponding to about \5 eV
worth of neutrinos" (i.e., one species of mass 5 eV, or two species of mass 2:5 eV,
and so on). This admixture of hot dark matter rejuvenates cold dark matter
provided the Hubble constant is not too large, H0 <� 55 km s�1Mpc�1; in fact,
a Hubble constant of closer to 45 km s�1Mpc�1 is preferred.

3. Cosmological constant + cold dark matter (�CDM) [89]. (A cosmo-
logical constant corresponds to a uniform energy density, or vacuum energy.)
Shifting 50% to 70% of the critical density to a cosmological constant lowers the
matter density and has the same bene�cial e�ect as a low Hubble constant. In
fact, a Hubble constant as large as 80 km s�1Mpc�1 can be accommodated. In
addition, the cosmological constant allows the age problem to solved even if the
Hubble constant is large, addresses the fact that few measurements of the mean
mass density give a value as large as the critical density (most measurements
of the mass density are insensitive to a uniform component), and allows the
baryon fraction of matter to be larger, which alleviates the cluster baryon prob-
lem. Not everything is rosy; cosmologists have invoked a cosmological constant
twice before to solve their problems (Einstein to obtain a static universe and
Bondi, Gold, and Hoyle to solve the earlier age crisis when H0 was thought to
be 250 km s�1Mpc�1). Further, particle physicists can still not explain why the
energy of the vacuum is not at least 50 (if not 120) orders of magnitude larger
than the present critical density, and expect that when the problem is solved
the answer will be zero.

4. Extra relativistic particles + cold dark matter (�CDM) [90]. Rais-
ing the level of radiation has the same bene�cial e�ect as lowering the matter
density. In the standard cosmology the radiation content consists of photons +
three (undetected) cosmic seas of neutrinos (corresponding to g� ' 3:36). While
we have no direct determination of the radiation beyond that in the CBR, there
are at least two problems: What are the additional relativistic particles? and
Can additional radiation be added without upsetting the successful predictions
of primordial nucleosynthesis which depend critically upon the energy density
of relativistic particles? The simplest way around these problems is an unstable
tau neutrino (mass anywhere between a few keV and a few MeV) whose decays
produce the radiation. This �x can tolerate a larger Hubble constant, though
at the expense of more radiation.

5. Tilted cold dark matter (TCDM) [91]. While the spectrum of density
perturbations in most models of ination is very nearly scale invariant, there
are models where the deviations are signi�cant (n � 0:8) which leads to smaller
uctuations on small scales. Further, if gravity waves account for a signi�cant
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part of the CBR anisotropy, the level of density perturbations can be lowered
even more. A combination of tilt and gravity waves can solve the problem
of too much power on small scales, but seems to lead to too little power on
intermediate and very small scales.

These possibilities represent di�erent approaches to improving the concordance of
CDM. They also represent well motivated modi�cations to the standard cosmology
in their own right. It has always been appreciated that the inationary spectrum
of density perturbations was not exactly scale invariant [47] and that the Hubble
constant was unlikely to be exactly 50 km s�1Mpc. Neutrinos exist; they are expected
to have mass; there is even some experimental data that indicates they do have mass
[92]. If the Hubble constant is as large as 70 km s�1Mpc�1 to 80 km s�1Mpc�1 a
cosmological constant seems inescapable based upon the age of the Universe alone.
There is no data precludes more radiation than in the standard cosmology. In fact,
these modi�cations to vanilla cold dark matter are so well motivated that one should
probably also consider combinations; e.g., lesser tilt and h = 0:45 and so on [93].

In evaluating these better �t models, one should keep the words of Francis Crick
in mind (loosely paraphrased): A model that �ts all the data at a given time is
necessarily wrong, because at any given time not all the data are correct(!). �CDM
provides an interesting/confusing example. When I discussed it in 1990, I called it
the best-�t Universe, and quoting Crick, I said that �CDM was certain to fall by the
wayside [94]. In 1995, it is still the best-�t model [95].

4.3 Reconstruction

If ination and the cold dark matter theory is shown to be correct, then a window to
the very early Universe (t � 10�34 sec) will have been opened. While it is certainly
premature to jump to this conclusion, I would like to illustrate one example of what
one could hope to learn. As mentioned earlier, the spectra and amplitudes of the
the tensor and scalar metric perturbations predicted by ination depend upon the
underlying model, to be speci�c, the shape of the inationary scalar-�eld potential.
If one can measure the power-law index of the scalar spectrum and the amplitudes of
the scalar and tensor spectra, one can recover the value of the potential and its �rst
two derivatives around the point on the potential where ination took place [96]:

V = 1:65T mPl
4; (113)

V 0 = �
s
8�r

7
V=mPl; (114)

V 00 = 4�
�
(n � 1) +

3

7
r
�
V=mPl

2; (115)

where r � T=S, a prime indicates derivative with respect to �, mPl = 1:22�1019 GeV
is the Planck energy, and the sign of V 0 is indeterminate. In addition, if the tensor
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spectral index can be measured a consistency relation, nT = �r=7, can be used to
further test ination. Reconstruction of the inationary scalar potential would shed
light both on ination as well as physics at energies of the order of 1015GeV. (If
� 6= 0, these expressions are modi�ed [97].)

5 The Future

The stakes for cosmology are high: if correct, ination/cold dark matter represents a
major extension of the big bang and our understanding of the Universe. Further, it
will shed light on the fundamental physics at energies of order 1015GeV.

What are the crucial tests and when will they be carried out? Because of the
many measurements/observations that can have signi�cant impact, I believe the an-
swer to when is sooner rather than later. The list of pivotal observations is long:
CBR anisotropy, large redshift surveys (e.g., the Sloan Digital Sky Survey will have
106 redshifts), direct searches for nonbaryonic in our neighborhood (both for axions
and neutralinos) and baryonic dark matter (microlensing), x-ray studies of galaxy
clusters, the use of back-lit gas clouds (quasar absorption line systems) to study the
Universe at high redshift, evolution (as revealed by deep images of the sky taken
by the Hubble Space Telescope and the Keck 10 meter telescope), measurements of
both H0 and q0, mapping of the peculiar velocity �eld at large redshifts through
the Sunyaev-Zel'dovich e�ect, dynamical estimates of the mass density (using weak
gravitational lensing, large-scale velocity �elds, and so on), age determinations, grav-
itational lensing, searches for supersymmetric particles (at accelerators) and neutrino
oscillations (at accelerators, solar-neutrino detectors, and other large underground
detectors), searches for high-energy neutrinos from neutralino annihilations in the
sun using large underground detectors, and on and on. Let me end by illustrating
the interesting consequences of several possible measurements.

A de�nitive determination that H0 is greater than 55 km s�1Mpc�1 would falsify
all CDM models except that with a cosmological constant and would certainly give
particle theorists something to think about. (A de�nitive determination that H0 is
75 km s�1Mpc�1 or larger would necessitate a cosmological constant based upon the
age of the Universe alone, though it should be noted that none of the CDM models
consistent with large-scale structure have an age problem.) A at Universe with a
cosmological constant has a very di�erent deceleration parameter than one dominated
by matter, q0 = �1:5
� + 0:5 � �(0:4 � 0:7) compared to q0 = 0:5, and this could
be settled by galaxy-number counts, quasar-lensing statistics, or a Hubble diagram
based upon Type Ia supernovae. The predicted CBR anisotropy on the 0:5Æ scale in
�CDM and LHC CDM is about 50% larger than vanilla CDM and about 50% smaller
in TCDM, which should be easily discernible. If neutrino-oscillation experiments were
to provide evidence for a neutrino of mass 5 eV (or two of mass 2:5 eV) �CDM would
seem almost inescapable [92].

More CBR measurements are in progress and there should many interesting results
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in the next few years. In the wake of the success of COBE there are proposals, both
in the US and Europe, for a satellite-borne instrument to map the CBR sky with a
factor of thirty or more better resolution. A map of the CBR with 0:3Æ resolution
could separate the gravity-wave contribution to CBR anisotropy and provide evidence
for the third robust prediction of ination, as well as determining other important
parameters [98], e.g., the scalar and tensor indices, 
�, and even 
0 (the position of
the \Doppler" peak scales as

p

0 degrees [99]).

The future in cosmology is very bright: We have a highly successful standard
model|the hot big-bang; bold ideas for extending it|ination and cold dark matter;
and a ood of data to test these ideas.
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